Answer:
Fg = 98.1 [N]; N = 98.1 [N]; Ff = 39.24 [N]; a = 2.076[m/^2]
Explanation:
To solve this problem, we must make a free body diagram and interpret each of the forces acting on the box. In the attached diagram we can find the free body diagram.
The gravitational force is equal to:
Fg = (10 * 9.81) = 98.1 [N]
Now by summing forces on the Y axis equal to zero, we can find the normal force exerted by the surface.
N - Fg = 0
N = Fg
N = 98.1 [N]
The friction force is defined as the product of normal force by the coefficient of friction.
Ff = N * μ
Ff = 98.1 * 0.4
Ff = 39.24 [N]
By the sum forces on the x-axis equal to the product of mass by acceleration (newton's second law), we can find the value of acceleration.
60 - Ff = m * a
60 - 39.24 = 10 * a
a = 2.076[m/^2]
Answer:
Thomson's model showed an atom that had a positively charged medium, or space, with negatively charged electrons inside the medium. After its proposal, the model was called a "plum pudding" model because the positive medium was like a pudding, with electrons, or plums, inside.
Answer:
Sound energy is produced when an object vibrates. The sound vibrations cause waves of pressure that travel through a medium, such as air, water, wood or metal. Sound energy is a form of mechanical energy.
Explanation:
Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.