Answer:
a. 2 Hz b. 0.5 cycles c . 0 V
Explanation:
a. What is period of armature?
Since it takes the armature 30 seconds to complete 60 cycles, and frequency f = number of cycles/ time = 60 cycles/ 30 s = 2 cycles/ s = 2 Hz
b. How many cycles are completed in T/2 sec?
The period, T = 1/f = 1/2 Hz = 0.5 s.
So, it takes 0.5 s to complete 1 cycles. At t = T/2 = 0.5/2 = 0.25 s,
Since it takes 0.5 s to complete 1 cycle, then the number of cycles it completes in 0.25 s is 0.25/0.5 = 0.5 cycles.
c. What is the maximum emf produced when the armature completes 180° rotation?
Since the emf E = E₀sinθ and when θ = 180°, sinθ = sin180° = 0
E = E₀ × 0 = 0
E = 0
So, at 180° rotation, the maximum emf produced is 0 V.
Answer:
14 m/s
Explanation:
The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:

where
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
d = 10.0 m is the distance covered by the book
Substituting data, we find

<span>b. The coefficient of static friction for all contacting surfaces is μs=0.35. neglect friction at the rollers.
</span>
No because you don’t learn about synthetic inventions yet in your first year
Answer:
The system's potential energy is -147 J.
Explanation:
Given that,
Energy = 147 J
We know that,
System is isolated and it is free from external forces.
So, the work done by the external forces on the system should be equal to zero.

We need to calculate the system's potential energy
Using thermodynamics first equation

Put the value into the formula


Hence, The system's potential energy is -147 J.