<span>1) y = -f(x) (This is the reflection about the x-axis of the graph y = f(x).) That is for every point (x, y) there is a point (x, -y).
</span><span>2) y = |f(x)| means that the entire graph will be above the x-axis. Why? (The absolute value is always positive, that's why!!)<span> To graph the absolute value graph, graph the function y = f(x). Anything above the x-axis, stays above it, anything below the x-axis is reflected above the x-axis and anything on the x-axis, stays on the x-axis.
</span></span><span>3) y = f(-x) (This is reflection about the y-axis of the graph y = f(x)) For every point on the right of the y-axis, there is a point equidistant to the left of the y-axis. That is for every point (x, y), there is a point (-x, y).
</span><span>4) Reflections about the line y = x is accomplished by interchanging the x and the y-values. Thus for y = f(x) the reflection about the line y = x is accomplished by x = f(y). Thus the reflection about the line y = x for y = x2 is the equation x = y2. </span>
Answer:
The nonzero value of c will be:
Step-by-step explanation:
Given the function


as

so

switching the sides

subtract c from both sides



Using the zero factor principle


so, the solutions to the quadratic equations are:

Therefore, a nonzero value of c will be:
Answer:
p3+13=37
We move all terms to the left:
p3+13-(37)=0
We add all the numbers together, and all the variables
p^3-24=0
The given function is
f(x) = 4x - 3/2
where
f(x) = number of assignments completed
x = number of weeks required to complete the assignments
We want to find f⁻¹ (30) as an estimate of the number of weeks required to complete 30 assignments.
The procedure is as follows:
1. Set y = f(x)
y = 4x - 3/2
2. Exchange x and y
x = 4y - 3/2
3. Solve for y
4y = x + 3/2
y = (x +3/2)/4
4. Set y equal to f⁻¹ (x)
f⁻¹ (x) = (x + 3/2)/4
5. Find f⁻¹ (30)
f⁻¹ (30) = (30 + 3/2)/4 = 63/8 = 8 (approxmately)
Answer:
Pedro needs about 8 weeks to complete 30 assignments.
Answer:
the answer is 1
Step-by-step explanation: