The reaction equation:
2Li + O → Li₂O
Molar ratio of Li to Li₂O is:
2 : 1
So if 3.03 moles of Li are present:
2/1 = 3.03 / x
x = 1.515 moles of Li₂O will be produced.
The balanced chemical reaction is written as:
<span>4C(s) + S8(s) → 4CS2(l)
We are given the amount of carbon and sulfur to be used in the reaction. We need to determine first the limiting reactant to be able to solve this correctly.
</span>7.70 g C ( 1 mol / 12.01 g) =0.64 mol C
19.7 g S8 ( 1 mol / 256.48 g) = 0.08 mol S8
The limiting reactant would be S8. We use this amount to calculate.
0.08 mol S8 ( 4 mol CS2 / 1 mol S8 ) ( 256.48 g / 1 mol ) = 78.8 g CS2
To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
<h3><u>Answer;</u></h3>
NH3/NH4+
<h3><u>Explanation;</u></h3>
From the equation;
NH3(aq)+HNO3(aq)→NH4+(aq)+NO3−(aq)
NH3 is the base; while NH4+ is the conjugate acid
HNO3 is the acid; while NO3- is the conjugate base
- The conjugate base of a Brønsted-Lowry acid is species that is formed after an acid donates a proton while the conjugate acid of a Brønsted-Lowry base is the species formed after a base accepts a proton.