No it does not effect the temperature of boiling point
Answer: 122 moles
Procedure:
1) Convert all the units to the same unit
2) mass of a penny = 2.50 g
3) mass of the Moon = 7.35 * 10^22 kg (I had to arrage your numbers because it was wrong).
=> 7.35 * 10^22 kg * 1000 g / kg = 7.35 * 10^ 25 g.
4) find how many times the mass of a penny is contained in the mass of the Moon.
You have to divide the mass of the Moon by the mass of a penny
7.35 * 10^ 25 g / 2.50 g = 2.94 * 10^25 pennies
That means that 2.94 * 10^ 25 pennies have the mass of the Moon, which you can check by mulitiplying the mass of one penny times the number ob pennies: 2.50 g * 2.94 * 10^25 = 7.35 * 10^25.
5) Convert the number of pennies into mole unit. That is using Avogadros's number: 6.022 * 10^ 23
7.35 * 10^ 25 penny * 1 mol / (6.022 * 10^ 23 penny) = 1.22* 10^ 2 mole = 122 mol.
Answer: 122 mol
Answer: Antarctica or anywhere
Explanation:
I hope this helps im not sure if I’m correct but I’m sure u can find them anywhere cold
We’ll be using the equation:
dG = dH - TdS (replace ‘d’ with triangle)
I’m going to assume 0 degrees Celsius.
At 0 C (273 K):
dG = dH - TdS
dG = (285,400 J) - (273 K)(-137.14 J/K)
dG = 285,400 J + 37,439.2 J
dG = 322,839.2 J or 322.84 kJ
The dG of this reaction is +322.84 kJ. This reaction is not considered spontaneous.
This answer, in this instance, would be D. If the temperature used in the question is not 0 degrees C, replace the temperature that I used for calculation with the Kelvin temperature given in the problem (K = C + 273), and simplify to find the answer.
Answer:
The correct option is B
Explanation:
The number of valence electron(s) increases across the period and thus influences the direction of periodic trend of electronegativity, electron affinity and ionization energy across the period. Thus, making option B the answer.
It should be noted that option A is wrong because elements in the same period generally have the same number of electron shells and thus the distance of this shells from the nucleus remains the same throughout the same period and thus option C is also wrong. Option D is wrong because the periodic trends have to do with chemical reactions which actually involves electrons and not protons.