Answer:
- 178 ºC
Explanation:
The ideal gas law states that :
PV = nRT,
where P is the pressure, V is the volume, n is number of moles , R is the gas constant and T is the absolute temperature.
For the initial conditions :
P₁ V₁ = n₁ R T₁ (1)
and for the final conditions:
P₂V₂= n₂ R T₂ where n₂ = n₁/2 then P₂ V₂ = n₁/2 T₂ (2)
Assuming V₂ = V₁ and dividing (2) by Eqn (1) :
P₂ V₂ = n₁/2 R T₂ / ( n₁ R T₁) then P₂ / P₁ = 1/2 T₂ / T₁
4.10 atm / 25.7 atm = 1/2 T₂ / 298 K ⇒ T₂ = 0.16 x 298 x 2 = 95.1 K
T₂ = 95 - 273 = - 178 º C
Answer:
Atoms are composed of a central nucleus which is surrounded by orbiting <u>Electrons</u>.
Explanation:
The word Atom is derived from atomos meaning indivisible particle. An atom is a very small sized particle and its size is approximately 100 picometers.
Atoms are composed of a Nucleus which contains protons and neutrons and the nucleus is surrounded by orbiting electrons. Also, the nucleus is positively charged due to +ve protons and the electrons revolving around nucleus are -vely charged making overall atom neutral in nature.
Atoms react with another atoms due to the presence of valence electrons present in the valence shell of an atom. The valence electrons would make a covalent bond by mutually sharing the electrons or it may form an ionic bond by gaining and loosing valence electron.
In this reaction 50% of the compound decompose in 10.5 min thus, it is half life of the reaction and denoted by symbol
.
(a) For first order reaction, rate constant and half life time are related to each other as follows:

Thus, rate constant of the reaction is
.
(b) Rate equation for first order reaction is as follows:
![k=\frac{2.303}{t_{1/2}}log\frac{[A_{0}]}{[A_{t}]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt_%7B1%2F2%7D%7Dlog%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D)
now, 75% of the compound is decomposed, if initial concentration
is 100 then concentration at time t
will be 100-75=25.
Putting the values,

On rearranging,

Thus, time required for 75% decomposition is 21 min.
1s2 2s2 2p2 i hope this helps
Answer:- 3.12 g carbon tetrachloride are needed.
Solution:- The balanced equation is:

From given actual yield and percent yield we will calculate the theoretical yield that would be further used to calculate the grams of carbon tetrachloride.
percent yield formula is:
percent yield = 


theoretical = 3.44 g
From balanced equation, there is 2:1 mol ratio between dichloethane and carbon tetrachloride.
Molar mass of dichloroethane is 84.93 gram per mol and molar mass of carbon tetrachloride is 153.82 gram per mol.

= 
So, 3.12 grams of carbon tetrachloride are needed to be reacted.