An 8th-degree polynomial needs 9 terms that involve
x⁸, x⁷, ..., x¹, and x⁰.
x=10 implies that (x-10) is a factor of the polynomial according to the Remainder theorem.
Let the polynomial be of the form
f(x) = a₁x⁸ + a₂x⁷ + a₃x⁶ +a₄x⁵ + a₅x⁴ + a₆x³ + a₇x² + a₈x + a₉
The first few lines of the synthetic division are
10 | a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ a₉ ( the first row has 9 coefficients)
-----------------------------------------
a₁
Answer:
The first row has 9 coefficients.
The answer is 23 1/3. First, you need to add 280 to both sides of the equations in order cancel out 280 and get 12x by itself. But remember whatever you do to one side of an equation, you must to do the other. So now you have 12x=280. Now divide both sides of the equation by 12 in order to get x completely isolated. 280 divided by twelve is 23 1/3.
The answer of this problem would be A: Y = -1 because the line needs to be horizontal.
Answer:
The missing segment length is 20.
Step-by-step explanation:
2 is multiplied by 4 to get to 8, so 5 must be multiplied by 4 to get to 20.
Answer:
1080 m^2 Don't submit m^2 in your answer.
Step-by-step explanation:
Givens
The catch is to find h
To do that, use a^2 + b^2 = c^2
a b and c are in the same 1/2 triangle.
a = 48/2 = 24 m
b = h = ?
c = 51 meters
Solution
a^2 + b^2 = 51^2 Substitute for b^2 = h^2
24^2 + h^2 = 51^2 Expand 24^2 and 51^2
576 + h^2 = 2601 Subtract 576 from both sides
h^2 = 2601 - 576
h^2 = 2025 Take the square root of both sides
h = 45
Area
Area = 1/2 b * h
Area = 1/2 48 * 45
Area = 1080
Remark
Notice that to find h you only use 1/2 of 48 because that is the base of the right triangle.
To find the area, you need to use all of 48 because 48 is the full length of the base.