1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reil [10]
2 years ago
6

How many DVDs would they each have if they continued the same pattern for ten ADDITIONAL weeks.​

Mathematics
1 answer:
Olenka [21]2 years ago
3 0

Answer:

Step-by-step explanation:

60 and 64 :)

You might be interested in
Whats kjfsjfhafkjsfvkasvkasfjgajsf 10 + 2
notsponge [240]

Answer:

12

Step-by-step explanation:

I think that’s what u saying

3 0
3 years ago
Read 2 more answers
FIND THE INDICATED PROBABILITY FOR THE FOLLOWING:
luda_lava [24]

The value of the probability P(A) is 0.40

<h3>How to determine the probability?</h3>

The given parameters about the probability are

P(A or B) = 0.6

P(B) = 0.3

P(A and B) = 0.1

To calculate the probability P(A), we use the following formula

P(A and B) = P(A) + P(B) - P(A or B)

Substitute the known values in the above equation

0.1 = 0.3 + P(A) - 0.6

Collect the like terms

P(A)= 0.1 - 0.3 + 0.6

Evaluate the expression

P(A)= 0.4

Hence, the value of the probability P(A) is 0.40

Read more about probability at

brainly.com/question/25870256

#SPJ1

3 0
2 years ago
Solve the system of equations.<br><br><br><br> −2x+5y =−35<br> 7x+2y =25
Otrada [13]

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

4 0
3 years ago
To solve the equation 5sin(2x)=3cosx, you should rewrite it as___.​
galina1969 [7]

Answer:

A

Step-by-step explanation:

We want to solve the equation:

5\sin(2x)=3\cos(x)

To do so, we can rewrite the equation.

Recall the double-angle for sine:

\sin(2x)=2\sin(x)\cos(x)

By substitution:

5\left(2\sin(x)\cos(x)\right)=3\cos(x)

Distribute:

10\sin(x)\cos(x)=3\cos(x)

We can subtract 3cos(x) from both sides:

10\sin(x)\cos(x)-3\cos(x)=0

And factor:

\cos(x)\left(10\sin(x)-3\right)=0

Hence, our answer is A.

*It is important to note that we should not divide both sides by cos(x) to acquire 10sin(x) = 3. This is because we need to find the values of x, and one or more may result in cos(x) = 0, and we cannot divide by 0. Hence, we should subtract and then factor.

5 0
2 years ago
Read 2 more answers
I need help on this math problem?​
Licemer1 [7]

Answer:

A thend D

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • For the linear equation above, y=1/2x-5, is the point (-14,-13) on this line? Explain how you know.
    13·1 answer
  • NO JOKE BUT THIS IS AN EMERGENCY PLZ, IF ANSWER IS RIGHT OR JUST WHATEVER U GET BRANLIEST NO MATTER WAT PLZZ HELP ME
    7·2 answers
  • Mavis is 5 years older than her brother. Five years ago she was 2 times older than her brother. How old is each now?
    13·2 answers
  • Simplify the polynomial: 2[4x-5(2x-1)]
    13·1 answer
  • Israel planted 4 tomato seeds in his garden. Then he planted s flower seeds. Which expression represents the number of seeds Isr
    13·2 answers
  • (Old Final Exam Problem-Sp2009) An hourglass is made up of two glass cones connected at their tips. Both cones have radius 1 inc
    10·1 answer
  • Use the communitve property to find the unknown number in the equation 35×70 =m×35
    6·2 answers
  • The table shows the results of a random survey of people about their favorite movie genres.
    9·2 answers
  • Please help me, due soon ​
    8·2 answers
  • can anyone help meeee plssss
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!