Answer:
A _commutator_ is used in a motor to switch the direction of the magnetic field created by the current.
The rotating part of a motor that holds the electromagnets is called the __armature___.
Electric current passes through the _brushes_ and into the electromagnets in an electric motor.
A motor turns _electrical_ energy into _mechanical_ energy.
Explanation:
A commutator, which is a split ring rotary switching device, reverses the direction of the current between the external circuit and the rotor. Reversing the current reverses the magnetic field.
The armature comprises the rotating part of the motor and the electromagnets
A brush is the electrical contact for conducting current through the moving and stationary parts of an electric motor
An electric motor turns electrical energy into mechanical energy.
Draw a free body diagram to show which forces act in the x and y directions. The x component equation is σfx = 0. The σfx being all the forces acting in the x direction.
The answer is B, because oxygen and sulfur are in the same group (group 6A)
Answer:
Yes, there is such a way.
Explanation:
If currents flow in the same direction in two or more long parallel wires, there will be an attractive force between the wires. If the current flows in different directions, there will be a repulsive force between the wires. In this case, these three parallel wires, can be be made to carry current in the same direction, creating an attractive force between all three wires.
Note that it is not possible to have at the least one of them carry current in the opposite direction and still have an attractive current between them.
Answer:
(a) 0.0171 V
Explanation:
A = 0.09 m^2, dB/dt = 0.190 T/s
(a) According to the law of electromagntic induction
e = dФ / dt
e = A dB / dt
e = 0.09 x 0.190 = 0.0171 V
(b)
as we know
i = e / R
we can find induced current by dividing induced emf by resistance