1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
12

If an object is in free fall, on the way down it will

Physics
1 answer:
Dmitriy789 [7]3 years ago
4 0

Answer:

It will find a worm when it hits the ground and starts Johnny sins fvcl<ing the worm

You might be interested in
Geologic time is divided into units based upon types of ___. A-sedimentary rocks. B-climate changes. C-organisms. D-igneous rock
olga2289 [7]
C organisms Hope this helps. :)
4 0
4 years ago
Read 2 more answers
A charge of -8.00 nC is spread uniformly over the surface of one face of a nonconducting disk of radius 1.05 cm.
gavmur [86]

Answer:

(a) E = -1.02 \times 10^5~N/C

(b) E = -9.7 \times 10^4~N/C

Explanation:

(a) The electric field for a point charge is given by the following formula:

\vec{E} = \frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}\^r

Since this formula is valid for point charges, we have to choose an infinitesimal area, da, from the disk. Then we will calculate the E-field (dE) created by this small area using the above formula, then we will integrate over the entire disk to find the E-field created by the disk.

dE = \frac{1}{4\pi\epsilon_0}\frac{dQ}{(\sqrt{z^2 + r^2})^2}

Here, z = 0.025 m. And r is the distance of the infinitesimal area from the axis. dQ is the charge of the small area, and should be written in terms of the given variables.

In cylindrical coordinates, da = r dr dθ. So,

\frac{Q}{\pi R^2} = \frac{dQ}{da}\\\frac{Q}{\pi R^2} = \frac{dQ}{rdrd\theta}\\dQ = \frac{Qrdrd\theta}{\pi R^2}

Hence, dE is now:

dE = \frac{1}{4\pi\epsilon_0}\frac{Q}{\pi R^2}\frac{rdrd\theta}{z^2 + r^2}

The surface integral over the disk can now be taken, but there is one more thing to be considered. This dE is a vector quantity, and it needs to be separated its components.

It has two components, one in the vertical direction and another in the horizontal direction. By symmetry, the horizontal components cancel out each other in the end (since it is a disk, each horizontal vector has an equal but opposite counterpart), so only the vertical component should be considered.

Let us denote the angle between dE and the horizontal axis as α. This angle can be found by the geometry of the triangle formed by dE, vertical axis of the disk, and horizontal plane. So,

\sin(\alpha) = \frac{z}{\sqrt{z^2 + r^2}}

Therefore, vertical component of dE now becomes

dE_z = \frac{1}{4\pi\epsilon_0}\frac{Q}{\pi R^2}\frac{rdrd\theta}{z^2 + r^2}\frac{z}{\sqrt{z^2+r^2}} = \frac{1}{4\pi\epsilon_0}\frac{Qz}{\pi R^2}\frac{rdrd\theta}{(z^2+r^2)^{3/2}}\\E_z =  \frac{1}{4\pi\epsilon_0}\frac{Qz}{\pi R^2}\int\limits^{2\pi}_0 \int\limits^R_0 {\frac{rdrd\theta}{(z^2+r^2)^{3/2}}} = \frac{1}{4\pi\epsilon_0}\frac{Qz}{\pi R^2} 2\pi(\frac{1}{z} - \frac{1}{\sqrt{z^2+R^2}})

Substituting the parameters, z = 0.025 m, Q = - 8 x 10^(-9) C, and R = 0.0105 m, yields the final result:

E_z = \frac{1}{2\epsilon_0}\frac{Qz}{\pi R^2}(\frac{1}{z} - \frac{1}{\sqrt{z^2+R^2}}) = -1.02 \times 10^5~N/C

(b) We will have a similar approach, but a simpler integral.

dE = \frac{1}{4\pi\epsilon_0}\frac{dQ}{z^2 + R^2}\\\frac{Q}{2\pi R} = \frac{dQ}{Rd\theta}\\dQ = \frac{Qd\theta}{2\pi}\\dE = \frac{1}{4\pi\epsilon_0}\frac{Qd\theta}{2\pi(z^2 + R^2)}\\dE_z = \frac{1}{4\pi\epsilon_0}\frac{Qd\theta}{2\pi(z^2 + R^2)}\frac{z}{\sqrt{z^2+R^2}} = \frac{1}{4\pi\epsilon_0}\frac{Qzd\theta}{2\pi(z^2 + R^2)^{3/2}}\\E_z = \frac{1}{4\pi\epsilon_0}\frac{Qz}{2\pi(z^2 + R^2)^{3/2}}\int\limits^{2\pi}_0 {} \, d\theta  = \frac{1}{4\pi\epsilon_0}\frac{Qz}{2\pi(z^2 + R^2)^{3/2}}2\pi

E_z = \frac{1}{4\pi\epsilon_0}\frac{Qz}{(z^2 + R^2)^{3/2}} = -9.07\times 10^4~N/C

Note that, in this case the source object is a one dimensional hoop rather than a two dimensional disk.

3 0
3 years ago
How does the force of gravity between two bodies change when the distance between them doubles? 1. unable to determine; the mass
Rzqust [24]
6. Drop to one quarter of its original value
7 0
3 years ago
HELP FAST!!!!!!<br><br> What is temperature? What instrument is used to measure temperature?
Keith_Richards [23]
Thermometer for the second part of question

4 0
3 years ago
Read 2 more answers
Which of the following is an example of a force? Question 13 options: a) push b) pull c) inertia d) both A and B e) all of the a
kupik [55]
Hey there! :D

Force is energy or strength that as the characteristic of movement or physical action. 

A push or pull is a force. It moves something physically. If I was going to push a door for it to open, I would physically be moving it. 

Inertia is a common tendency to remain unchanged or do nothing. If you are not doing anything, you are not applying force or movement to anything. This would not be the correct answer. We can eliminate "C" and "E"

Since a push and pull both are a force, then "D" is the answer. They both are.

I hope this helps!
~kaikers 


4 0
3 years ago
Other questions:
  • As magma rises, it carves a tube-shaped structure called a _____.
    10·2 answers
  • Evolution refers to which of the following? A. having traits that help a species survive B. the gradual change of a species over
    8·1 answer
  • A trumpeter is placed on a moving sidewalk that moves at a constant velocity of 4.5 m/s. A listener is standing 6.0 m in front o
    10·1 answer
  • An internal combustion engine has an efficiency of 22.3%. This engine is used to deliver 6.25x 40 J of work to drive the motion
    5·1 answer
  • The acceleration vector of a particle in projectile motion ________.
    11·1 answer
  • Need help quick hurry!!!!!!
    7·2 answers
  • A bus manufacturer decides to double a window's area in order to give passengers a
    14·1 answer
  • Which change occurs only in males during puberty
    8·1 answer
  • What happens to the water vapor in the air when the air temperature cools?
    12·1 answer
  • the moderate temperatures of islands throughout the world has much to do with water's vast supply of internal energy. high evapo
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!