When she starts out, he is (40x2.5)= 100 miles ahead of her.
She gains (65-40)= 25 miles on him every hour.
It takes her (100/25)= 4 hours to catch up to him.
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final height
is the bomb's initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's final velocity
Knowing this, let's begin with the answers:
<h3>b) Time
</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity
</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign only indicates the direction is downwards
<h3>c) Range
</h3>
Substituting (7) in (2):
(11)
(12)
Gases have heavier molecules. Since all gases have the same average kinetic energy at the same temperature, lighter molecules move faster and heavier molecules move slower on average.
Answer:
<em>They represent kinetic energy</em>
Explanation:
<u>Kinetic Energy
</u>
A body can do work due to some of its attributes or states. For example, its mass can do work if used to provide energy, if the object is at a certain height respect to some reference level, it can do work when going downwards (potential energy), if the object moves at a certain speed, it can do work when transferring part of its speed to other objects. It's called kinetic energy and is given by

Both runners are moving in a horizontal path, thus they have kinetic energy, given by the above equation. If they could jump below ground level, then they will also have potential energy
Answer:
speed and acceleration
Explanation:
speed is a scalar quantity
acceleration is a vector quantity