Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
its c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
C. Acceleration is the rate of change of velocity. So at the top of the path, while the velocity is zero, the CONSTANT GRAVITATIONAL ACCELERATION is about 10 m/s^2 (9.8)
The strength of the friction doesn't matter. Neither does the distance or the time the asteroid takes to stop. All that matters is that the asteroid has
1/2 (mass) (speed squared)
of kinetic energy when it lands, and zero when it stops.
So
1/2 (mass) (original speed squared)
is the energy it loses to friction in order to come to rest.
Answer:
60,000m
Explanation:
Convert km/h to m/s by multiplying with 1000/3600.
Convert hours to seconds by multiplying with 3600.
Because displacement is a vector quantity and deals with the shortest distance between points, simply plug it into the equation s=vt.