Answer:
773.15K
Explanation:
Temperature is measured in different units, however, the standard or absolute temperature unit is Kelvin (K).
To convert the temperature of a black body, which is 500°C to Kelvin, we use;
T(K) = T(°C) + 273.15
T(K) = 500°C + 273.15
T(K) = 773.15K
Hence, the temperature of the blackbody at 500°C will be 773.15 K for it to radiate twice as much energy per second.
First, let's list everything we have...
a = 1.83 m/s^2
F = 1870 N (converted from kN to N)
vi = 0 m/s (it says started from rest, therefore velocity starts at 0)
t = 16 s
1). "Force acting on the car" is a bit ambiguous because there are many forces. But I'm going to assume that they are looking for just a basic implementation of force equation:

where:
F = force
m = mass
a = acceleration
2). I recommend memorizing your equations of motion, because once you know them this part is also just as easy:

where:
vf = final velocity
vi = initial velocity
a = acceleration
t = time
Answer:
Magnetic field strength required for this is 0.25 T
Explanation:
As we know that the proton moves in circular path in uniform magnetic field
so the radius of the path of the circle is given as

here we know that




now we have

so we have

The electric magnet (Electromagnetic) is temporary because you can turn it on and off. When it's power source is gone, the magnet becomes useless. Usually it's power source is a battery, but it could be solar with a switch. Hope this helps. Please give me brainliest is this helps you.