Answer:
B. 6 cm
Explanation:
First, we calculate the spring constant of a single spring:
where,
k = spring constant of single spring = ?
F = Force Applied = 10 N
Δx = extension = 4 cm = 0.04 m
Therefore,
Now, the equivalent resistance of two springs connected in parallel, as shown in the diagram, will be:
For a load of 30 N, applying Hooke's Law:
Hence, the correct option is:
<u>B. 6 cm</u>
Answer:
besides a reduction in friction, the only way to increase the amount of work output of a machine is to Increase the work input
i
Explanation:
Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Answer: Your nose inhales O2 and goes through these little nose hairs to keep stuff that doesn't belong in your airway, it goes through your nose into your lungs taking in O2 for your blood. The other substances that you have inhaled get absorbed elsewhere and it is converted into CO2 which is what you exhale.
Explanation:
Answer:
The answer is D 100 newton
Explanation:
2.0m/s2 is d acceleration while the 50kg is the mass. Force = mass x acceleration. So f=50x2.so force is 100 newton