Answer:
C. The sum of 18 and half the product of 9 and 4.
Answer:
5. LCM of 7 and 14: <u> </u><u> </u><em><u>1</u></em><em><u>4</u></em><em><u>. </u></em>
multiples of 7: <u> </u><u> </u><u>7</u><u>,</u><u> </u><u>1</u><u>4</u><u> </u>
multiples of 14: <u> </u><u>1</u><u>4</u><u> </u>
LCM of 8 and 12: <u> </u><u> </u><em><u>2</u></em><em><u>4</u></em><em><u>. </u></em>
multiples of 8: <u> </u><u> </u><u>8</u><u>,</u><u> </u><u>1</u><u>6</u><u>,</u><u> </u><u>2</u><u>4</u><u> </u>
multiples of 12: <u> </u><u> </u><u>1</u><u>2</u><u>,</u><u> </u><u>2</u><u>4</u><u> </u>
Step-by-step explanation:

I think it's 9 but I could be wrong
The height of the tank must be at least 1 foot, or 12 inches. We know the floor area (which is length x width) must be at least 400 inches. Therefore these minimum dimensions already tell us that the minimum volume is 400 x 12 = 4800 cubic inches. Since we have a maximum of 5000 cubic inches, the volume must be within the range of 4800 - 5000 cubic inches.
We can set the height at exactly 1 ft (or 12 inches). Then we can select length and width that multiply to 400 square inches, for example, L = 40 inches and W = 10 in. This gives us a tank of dimensions 40 x 10 x 12 = 4800 cubic inches, which fits all the criteria.