Answer:
6283 in³
Step-by-step explanation:
The largest sphere that can fit into the cardboard box must have its diameter, d equal to the length, L of the cardboard box.
Since the cardboard box is in the shape of a cube, its volume V = L³
So, L = ∛V
Since V = 12000 in³,
L = ∛(12000 in³)
L= 22.89 in
So, the volume of the sphere, V' = 4πr³/3 where r = radius of cube = L/2
So, V = 4π(L/2)³/3
= 4πL³/8 × 3
= πL³/2 × 3
= πL³/6
= πV/6
= π12000/6
= 2000π
= 6283.19 in³
≅ 6283.2 in³
= 6283 in³ to the nearest whole cubic inch
Answer:
36.5 inches
Step-by-step explanation:
Given
See attachment for the given data
Required
Which length is closest to 4.2lb
The given data is a linear dataset.
So, we start by calculating the slope (m)

Pick any two corresponding points from the table
So, we have:


So:




The linear equation is then calculated using:

This gives:

Open bracket


To get the length closest to 4.2lb,
we set 
Then solve for x
So, we have:


Collect like terms


Solve for x


<span>0, (4) = 4/9 <span>L circle = 2πR </span><span>L circle = 2 · π · 4/9 </span><span>L circle = 8π / 9 cm
</span></span>L = 2 * pi * R
<span>L = 2 * pi * 0. (4) cm = 0. (8) pi cm</span>
Answer: 
Step-by-step explanation:


Answer:
1/56 chance
Step-by-step explanation:
3/8 x 2/7 x 1/6 = 1/56