If net external force acting on the system is zero, momentum is conserved. That means, initial and final momentum are same → total momentum of the system is zero.
Sally wins the race by 0.03 min
Explanation:
To find time = distance / velocity
Sally;
1 mile / 12 mph
= ¹/12 hrs * 60
= 5 min
Ramona;
³/4 mile ÷ 11 mph + ¹/4 mile ÷ 16 mph
= ³/44 hrs + ¹/64 hrs
= 4.09 min + 0.94 min
= 5.03 min
Answer: Part 1: Propellant Fraction (MR) = 8.76
Part 2: Propellant Fraction (MR) = 1.63
Explanation: The Ideal Rocket Equation is given by:
Δv = 
Where:
is relationship between exhaust velocity and specific impulse
is the porpellant fraction, also written as MR.
The relationship
is: 
To determine the fraction:
Δv = 

Knowing that change in velocity is Δv = 9.6km/s and
= 9.81m/s²
<u>Note:</u> Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.
<u />
<u>Part 1</u>: Isp = 450s

ln(MR) = 
ln (MR) = 2.17
MR = 
MR = 8.76
<u>Part 2:</u> Isp = 2000s

ln (MR) = 
ln (MR) = 0.49
MR = 
MR = 1.63
Answer:
P₁ = 219.3 Pa
Explanation:
This fluid mechanics problem, we can use that the pressure is distributed with the same value throughout the system, which is Pascal's principle.
Let's use the subinidce1 for the small diameter and the subscript 2 for the larger diameter.
P₁ = P₂
pressure is defined by
P = F / A
we subtitute
F₁ / A₁ = F₂ / A₂
F₁ = F₂ A₁ / A₂
the area in a circle is
A = π r² = π d² / 4
we substitute
F₁ = F₂ (d₁ / d₂)²
we calculate
F₁ = 17640 (2/32)²
F₁ = 68.9 N
Having the force to be applied we can find the air pressure on the small plunger
P₁ = F₁ / A₁
P₁ = F₁ 4 / π d₁²
let's calculate
P₁ = 68.9 4 / (π 0.02²)
P₁ = 219.3 Pa
Answer:
Od- Wooden
Explanation:
It would not make sense if it was non-wood because that make it no a wood base product, OC is not right because its not a a plant that produces wood as its structural tissue and thus has a hard stem. An OA justT o take or get a supply of wood. so its Od