Answer:
The average power of the engine of the sports car is 56.32 kW
Explanation:
Given;
mass of the sports car, m = 1100 kg
initial velocity of the sports car, u = 0 m/s
final velocity of the sports car, v = 32 m/s
time of motion, t = 10 s
The kinetic energy of the car is given by;
K.E = ¹/₂m(v² - u²)
K.E = ¹/₂mv²
K.E = ¹/₂ x 1100 x 32²
K.E = 563200 J
The average power of the engine of the sports car is given by;
Pavg = Energy / time
Pavg = 563200 / 10
Pavg = 56320 W
Pavg = 56.32 kW
Therefore, the average power of the engine of the sports car is 56.32 kW
To solve this problem, we are going to use the formula for
work which is Fd where x and y are measured separately.
X direction: W = 13.5 x 230 = 3105 Joules
Y direction: W = -14.3 x -165 = 2360 Joules
So the total work is getting the sum of the two: 3105 + 2360
= 5465 Joules
Answer:
A works to find magnitude. The leading negative sign gives us the positive magnitude after the correct velocity is found without it.
Answer:
option B
Explanation:
given,
Force exerted by the hydraulic jack piston = F₁ = 250 N
diameter of piston, d₁ = 0.02 m
r₁ = 0.01 m
diameter of second piston, d₂ = 0.15 m
r₂ = 0.075 m
mass of the jack to lift = ?
now,




F₂ = 14062.5 N
F = m g


m = 1435 Kg
hence, the correct answer is option B