Answer:
70
Step-by-step explanation:
the red lines mean the two sides are equal
so its an isosceles triangle meaning the two angles other than the 40° one are equal
the inner angles of a triangle must add up to 180
so 180-40 = 2x
140 = 2x
x = 140/2 = 70
Answer:
1) b and m
2) m∠8=m∠6
3) 160°
4)x=60°
Step-by-step explanation:
1) all straight lines sum to 180°
subtract the angles given from 180°
the other angle for b is 25°, while the other angle for m is 155°
so we can see that the angles for both lines are the same, hence they are parallel.
2) ∠8 should be the same as ∠6, ∠10 should be the same as ∠3, ∠7 same as ∠5 and ∠9 same as ∠4
in the options we are only given '∠8 should be the same as ∠6' as the correct answer, so we take that.
3) from the image we can see that both horizontal lines are parallel to each other, so both angles on the lines should be same, so ∠CET would be (2x-16)°
(2x-16)°+(7x+20)°=180°
we get x=20(nearest whole number)
∠CED=7x+20=7(20)+20=160°
4) since we need to show that they are parallel,
(2x+30)°=(4x-90)°
2x-4x=-90-30
-2x=-120
x=60
we then plug the x value into the two equations, in which we get 150° for both the angles [2(60)+30=4(60)-90] ⇒ (150=150)
I hope u understand it the way I put it.
Sure. what is it that you have to do with statistics
The first set:
3x + 2y = 2 ---1)
5x + 4y = 6 ---2)
From 1), multiply all by 2, 6x + 4y = 4 ---3)
3) - 2),
6x + 4y - (5x + 4y) = 6 - 4
6x + 4y - 5x - 4y = 2
x = 2
Sub in x = 2 into 1),
3(2) + 2y = 2
2y = -4
y = -2
(2 , -2)
The second set:
3x + 2y = 2 ---1)
11x + 8y = 10 ---2)
From 1), multiply all by 4, 12x + 8y = 8 ---3)
3) - 2),
12x + 8y - (11x + 8y) = 8 - 10
12x + 8y - 11x - 8y = -2
x = -2
From this x value alone, we can tell that these two linear systems do NOT have the same solution as they meet at different coordinates.
Hope this helped! Ask me if there's any working from here that you don't understand! :)
Let d(x) = 2x - 4
Or
y = 2x - 4
We have replace x = y
x = 2y - 4
Now Isolate "y"
x + 4 = 2y
Pass "2" dividing
(x + 4) / 2 = y
y = x/2 + 2
Or
d(x)^-1 = x/2 + 2