Answer: 36
Step-by-step explanation:
1) substitute x for 6
get f(-5)=6(1--5)= 6+30=46
Answer:
a)
a1 = log(1) = 0 (2⁰ = 1)
a2 = log(2) = 1 (2¹ = 2)
a3 = log(3) = ln(3)/ln(2) = 1.098/0.693 = 1.5849
a4 = log(4) = 2 (2² = 4)
a5 = log(5) = ln(5)/ln(2) = 1.610/0.693 = 2.322
a6 = log(6) = log(3*2) = log(3)+log(2) = 1.5849+1 = 2.5849 (here I use the property log(a*b) = log(a)+log(b)
a7 = log(7) = ln(7)/ln(2) = 1.9459/0.6932 = 2.807
a8 = log(8) = 3 (2³ = 8)
a9 = log(9) = log(3²) = 2*log(3) = 2*1.5849 = 3.1699 (I use the property log(a^k) = k*log(a) )
a10 = log(10) = log(2*5) = log(2)+log(5) = 1+ 2.322= 3.322
b) I can take the results of log n we previously computed above to calculate 2^log(n), however the idea of this exercise is to learn about the definition of log_2:
log(x) is the number L such that 2^L = x. Therefore 2^log(n) = n if we take the log in base 2. This means that
a1 = 1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
a7 = 7
a8 = 8
a9 = 9
a10 = 10
I hope this works for you!!
Well tan x has asymptotes every 90 degrees, or in radian mode, every pi divided by two. since cot is the inverse and the aymsptotes land on every 180 degrees, meaning the equation can be x ≠ \pi n, nEI
Answer:
x=5, y=2
Step-by-step explanation:
To solve this system, we need to find x and y. First, let's find x. In the first equation (6x+4y=42), subtract 4y on both sides to isolate 6x. This will result in 6x=42-4y. Divide by 6 on both sides to isolate x and get x=7-
y. Now we know what x equals. Go to the second equation ad plug this into it. So instead of -3x+3y=-6, you'll have -3(7-
y)+3y=-6. Use the distributive property to get -21+2y+3y=-6. Add 2y and 3y to get -21+5y=-6. Add 21 to both sides to isolate 5y and get 5y=15. Divide by 5 on both sides to isolate y and get y=3. Now that we know that y=3, we can plug this back into the equation that was bolded above so that we can find x, so we'll have x=7-
(3) since y=3, and we'll get x=7-
, or x=7-2, or x=5.
x=5
y=2
When taking square roots, you can't take square roots of negative roots of negative numbers. So, what will work for the domain of u(x) is what makes u(x) zero or more. We can make an inequality for that.
u(x) ≥ 0.

9x + 27 ≥ 0 by squaring both sides
9x ≥ -27
x ≥ -3
So the domain of the function is when x ≥ -3 is true.