Solve tan x - square root 1-2tan^2x=0 given that 0 degrees < x<360degrees
2 answers:
Answer:
x=30° or 210°
Step-by-step explanation:
The given equation is:

Taking the second term to RHS we get

Squaring both sides of the equation,we get



∴tanx=±
But tanx cannot be negative as RHS in the given equation will be positive always. Hence tanx=
∴ x=30° or x=180°+30°=210° (As tan is positive in first and third quadrant)
Answer:
x = 30 or x = 210
Step-by-step explanation:
Given equation is:
![\[\tan x - \sqrt{1 - 2*\tan ^{2} x} = 0\] ](https://tex.z-dn.net/?f=%5C%5B%5Ctan%20x%20-%20%5Csqrt%7B1%20-%202%2A%5Ctan%20%5E%7B2%7D%20x%7D%20%3D%200%5C%5D%0A)
Simplifying,
![\[\tan x = \sqrt{1 - 2*\tan ^{2} x}\]](https://tex.z-dn.net/?f=%5C%5B%5Ctan%20x%20%3D%20%5Csqrt%7B1%20-%202%2A%5Ctan%20%5E%7B2%7D%20x%7D%5C%5D)
Squaring both sides,
![\[\tan ^{2} x = 1 - 2*\tan ^{2} x\]](https://tex.z-dn.net/?f=%5C%5B%5Ctan%20%5E%7B2%7D%20x%20%3D%201%20-%202%2A%5Ctan%20%5E%7B2%7D%20x%5C%5D)
=> ![\[\tan ^{2} x + 2*\tan ^{2} x = 1\]](https://tex.z-dn.net/?f=%5C%5B%5Ctan%20%5E%7B2%7D%20x%20%2B%202%2A%5Ctan%20%5E%7B2%7D%20x%20%3D%201%5C%5D)
=> ![\[\3*\tan ^{2} x= 1\]](https://tex.z-dn.net/?f=%5C%5B%5C3%2A%5Ctan%20%5E%7B2%7D%20x%3D%201%5C%5D)
=> ![\[\tan x= \pm \frac{1}{\sqrt{3}}\]](https://tex.z-dn.net/?f=%5C%5B%5Ctan%20x%3D%20%5Cpm%20%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D%5C%5D)
Solving for x which satisfies the above equality and also 0 < x < 360,
x = 30 or x = 210
You might be interested in
Answer:
852
Step-by-step explanation:
2 times 10 is 20
8 times 109 is 872
You subtract the two values, 872-20=852
Answer:
20xp
Step-by-step explanation: