Answer:
The steps are explained below, the essential step is to find mass here, 120 g of NaOH.
Explanation:
In order to answer this question, we need to define molarity conceptually firstly to see what variables we need. According to the formula, molarity is equal to the ratio between moles and volume, while moles itself is a ratio between mass and molar mass. This means we have a formula for molarity involving mass, molar mass and volume:

In order to prepare a 500.0 mL of stock solution of 6.0 M of NaOH, we then need to find the mass of NaOH dissolved in this solution using the equation above:

Now, since we have the mass of NaOH, we can describe the steps needed to prepare this solution:
- measure 120 grams of solid NaOH;
- add this mass of NaOH into a 500.0-mL Erlenmeyer flask;
- fill approximately half of the flask with distilled water and stir gently to make sure that NaOH dissolves, if it doesn't, add more water and repeat the process;
- when NaOH fully dissolves, fill the flask to the mark.
Our solution is prepared.
Answer:
134.8 seconds is the half-life (in seconds) of the reaction for the initial
concentration
Explanation:
Half life for second order kinetics is given by:

Integrated rate law for second order kinetics is given by:

= half life
k = rate constant
= initial concentration
a = Final concentration of reactant after time t
We have :

Initial concentration of ![C_2F_4=[a_o]=\frac{0.438 mol}{2.42 L}=0.1810 mol/L](https://tex.z-dn.net/?f=C_2F_4%3D%5Ba_o%5D%3D%5Cfrac%7B0.438%20mol%7D%7B2.42%20L%7D%3D0.1810%20mol%2FL)
Rate constant = k = 



134.8 seconds is the half-life (in seconds) of the reaction for the initial
concentration
Answer:
Iron is the densest out of the given options.
Explanation:
Oxygen
1.429 g/L
Water
1000 g/L
Hydrogen Peroxide
1450 g/L
Iron
7874 g/L
Iron Oxide
5240 g/L