Answer:
See Explanation
Explanation:
Metallic bonds involve attraction between electrons and positively charged metal ions. The metals are ionized and electrons form a sea of valence electrons. These loosely bound electrons surround the nuclei of the metals.
The presence of this sea of electrons explains the fact that metals conduct electricity and heat due to the free valence electrons.
Due to the nature of the bonding between metal atoms,metals are malleable and ductile.
Due to the strong electrostatic interaction between metal ions and electrons, the metallic bond is very strong and is very difficult to break thereby accounting for the greater strength of metals as the size of the metallic ion decreases.
Answer:
75 mg
Explanation:
We can write the extraction formula as
x = m/[1 + (1/K)(Vaq/Vo)], where
x = mass extracted
m = total mass of solute
K = distribution coefficient
Vo = volume of organic layer
Vaq = volume of aqueous layer
Data:
m = 75 mg
K = 1.8
Vo = 0.90 mL
Vaq = 1.00 mL
Calculations:
For each extraction,
1 + (1/K)(Vaq/Vo) = 1 + (1/1.8)(1.00/0.90) = 1 + 0.62 = 1.62
x = m/1.62 = 0.618m
So, 61.8 % of the solute is extracted in each step.
In other words, 38.2 % of the solute remains.
Let r = the amount remaining after n extractions. Then
r = m(0.382)^n.
If n = 7,
r = 75(0.382)^7 = 75 × 0.001 18 = 0.088 mg
m = 75 - 0.088 = 75 mg
After seven extractions, 75 mg (99.999 %) of the solute will be extracted.
Answer:
Nitrogen is a chemical element that has the symbol N and atomic number 7 and atomic mass 14.00674µ.
Explanation:
Answer:
When chlorine and bromine atoms come into contact with ozone in the stratosphere, they destroy ozone molecules.
Explanation:
Answer:
22.8 L
Explanation:
Step 1: Given data
- Moles of the gas (n): 1.35 mol
- Pressure of the gas (P): 1.30 atm
- Ideal gas constant (R): 0.0821 atm.L/mol.K
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15 = -6 + 273.15 = 267 K
Step 3: Calculate the volume of the gas
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 1.35 mol × (0.0821 atm.L/mol.K) × 267 K / 1.30 atm
V = 22.8 L