Answer:
are you talking about plant cells?
Explanation:
Answer:
5.1622 mol This is the answer for your questions
82 because that’s my answer
Molarity is defined as number of moles of solute in 1 L of solution.
Here, 0.1025 g of Cu is reacted with 35 mL of HNO_{3} to produced Cu^{2+} ions.
The balanced reaction will be as follows:
Cu+3HNO_{3}\rightarrow Cu(NO_{3})_{2}+NO_{2}+H_{2}O
From the above reaction, 1 mole of Cu produces 1 mole of Cu^{2+}, convert the mass of Cu into number of moles as follows:
n=\frac{m}{M}
molar mass of Cu is 63.55 g/mol thus,
n=\frac{0.1025 g}{63.55 g/mol}=0.0016 mol
Now, total molarity of solution, after addition of water is 200 mL or 0.2 L can be calculated as follows:
M=\frac{n}{V}=\frac{0.0016 mol}{0.2 L}=0.008 mol/L=0.008 M
Thus, molarity of Cu^{2+} is 0.008 M.
Explanation:
The given reaction at cathode will be as follows.
At cathode:
,
= -0.761 V
At anode:
,
= 0.761
Therefore, net reaction equation will be as follows.

Initial: 0.129 - - 0.427
Change: -0.047 - - -0.047
Equilibrium: (0.129 - 0.047) (0.427 - 0.047)
= 0.082 = 0.38
As
for the given reaction is zero.
Hence, equation for calculating new cell potential will be as follows.
E_{cell} = ![E^{o}_{cell} - \frac{RT}{nF} ln \frac{[Zn^{2+}]_{products}}{[Zn^{2+}]_{reactants}}](https://tex.z-dn.net/?f=E%5E%7Bo%7D_%7Bcell%7D%20-%20%5Cfrac%7BRT%7D%7BnF%7D%20ln%20%5Cfrac%7B%5BZn%5E%7B2%2B%7D%5D_%7Bproducts%7D%7D%7B%5BZn%5E%7B2%2B%7D%5D_%7Breactants%7D%7D)
= 
= 0.019
Thus, we can conclude that the cell potential of the given cell is 0.019.