Answer:
64.52 mg.
Explanation:
The following data were obtained from the question:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Final amount (N) =.?
Next, we shall determine the rate constant (K).
This is illustrated below:
Half life (t½) = 1590 years
Rate/decay constant (K) =?
K = 0.693 / t½
K = 0.693/1590
K = 4.36×10¯⁴ / year.
Finally, we shall determine the amount that will remain after 1000 years as follow:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Rate constant = 4.36×10¯⁴ / year.
Final amount (N) =.?
Log (N₀/N) = kt/2.3
Log (100/N) = 4.36×10¯⁴ × 1000/2.3
Log (100/N) = 0.436/2.3
Log (100/N) = 0.1896
Take the antilog
100/N = antilog (0.1896)
100/N = 1.55
Cross multiply
N x 1.55 = 100
Divide both side by 1.55
N = 100/1.55
N = 64.52 mg
Therefore, the amount that remained after 1000 years is 64.52 mg
In photosynthesis, plants take in carbon dioxide and turn it into energy that comes out as oxygen.
What volume of 2.50 m lead ll nitrato
Acid Sorry if I am wrong but I am pretty positive it’s acid