Answer: 14 Units
Step-by-step explanation: Subtract (10-2) and (11-5)
Answer:
At a certain pizza parlor,36 % of the customers order a pizza containing onions,35 % of the customers order a pizza containing sausage, and 66% order a pizza containing onions or sausage (or both). Find the probability that a customer chosen at random will order a pizza containing both onions and sausage.
Step-by-step explanation:
Hello!
You have the following possible pizza orders:
Onion ⇒ P(on)= 0.36
Sausage ⇒ P(sa)= 0.35
Onions and Sausages ⇒ P(on∪sa)= 0.66
The events "onion" and "sausage" are not mutually exclusive, since you can order a pizza with both toppings.
If two events are not mutually exclusive, you know that:
P(A∪B)= P(A)+P(B)-P(A∩B)
Using the given information you can use that property to calculate the probability of a customer ordering a pizza with onions and sausage:
P(on∪sa)= P(on)+P(sa)-P(on∩sa)
P(on∪sa)+P(on∩sa)= P(on)+P(sa)
P(on∩sa)= P(on)+P(sa)-P(on∪sa)
P(on∩sa)= 0.36+0.35-0.66= 0.05
I hope it helps!
Conditional probablility P(A/B) = P(A and B) / P(B). Here, A is sum of two dice being greater than or equal to 9 and B is at least one of the dice showing 6. Number of ways two dice faces can sum up to 9 = (3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6) = 10 ways. Number of ways that at least one of the dice must show 6 = (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (6, 5), (6, 4), (6, 3), (6, 2), (6, 1) = 11 ways. Number of ways of rolling a number greater than or equal to 9 and at least one of the dice showing 6 = (3, 6), (4, 6), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6) = 7 ways. Probability of rolling a number greater than or equal to 9 given that at least one of the dice must show a 6 = 7 / 11
Division using multiples of 10 is different than how most of us learned how to divide. <span>The idea of multiple is what number can 10 go into without a remainder. That is easy. Ten ends in a zero. Thus 10 goes into numbers ending in zero. An example is 60. Ten ends in a zero; 60 ends in a zero. It will divide evenly. </span>