In the reaction, Na⁺ + 6H₂O ⇆ Na (H₂O)⁺₆, Na⁺ is a Lewis acid and H₂O is a Lewis base.
<h3>
What is a Lewis acid-base reaction?</h3>
- According to the Lewis theory of acid-base reactions, acids accept pairs of electrons and bases donate pairs of electrons.
- Any substance like H+ ion, which is capable of accepting a pair of nonbonding electrons or an electron-pair acceptor is known as a Lewis acid.
- Any substance, like the OH- ion, that is capable of donating a pair of nonbonding electrons or an electron-pair donor is a Lewis base.
- Here Na⁺ that is electron deficient accepts electrons from the electron donor, H₂O
- From the Lewis theory, with no change in the oxidation numbers of any atoms, acids react with bases to share a pair of electrons.
To learn more about Lewis acid-base reactions: brainly.com/question/14861040
#SPJ4
Explanation :
The balanced chemical reaction is,

The expression for the rates of consumption of the reactants are:
The rate of consumption of
= ![-\frac{1}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
The rate of consumption of
= ![-\frac{d[BrO_3^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D)
The rate of consumption of
= ![\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
The expression for the rates of formation of the products are:
The rate of consumption of
= ![+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
The rate of consumption of
= ![+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
In preparing diluted solutions from concentrated solutions we can use the following formula
c1v1 = c2v2
c1 and v1 are the concentration and volume of the concentrated solution respectively
c2 and v2 are the concentrations and volume of the diluted solution respectively
Substituting these values ,
20 mL x 1.0 M = C x 60 mL
C = 0.33 M
The concentration of the resulting diluted solutions is 0.33 M
According to Avogadro's Law, same volume of any gas at standard temperature and pressure will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = ?
V = Volume = 16.8 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 16.8 L) ÷ 22.4 L
= 0.75 moles
Result:
16.8 L of Nitrogen gas will contain 0.75 moles at standard temperature and pressure.