Answer:
An atom is made of up subatomic particles called protons, neutrons and electrons. The center of an atom is called the nucleus and is where the protons and neutrons are held while electrons orbit the nucleus in orbital shells. A electron has a negative charge, a proton has a positive charge, and a neutron has no charge (neutral).
The atomic number of a atom is the total amount of the atom's protons. In a neutral atom (Not an ion), the amount of electrons is the same as the protons. Therefore, the atomic number also tells the amount of electrons in the atom.
A ion is a negatively or positively charged particle due to the giving or taking of electrons with one or more atoms (Called an ionic bond). An atom that gives away electrons becomes positively charge because that atom now has more protons than neutrons. An atom that takes an electron becomes negatively charge because that atom now has more electrons than protons.
Atomic Mass is the sum of an atom proton and neutrons. To determine how many neutron an atom has, subtract the atomic mass from the atomic number. Electrons do not play a part in atomic mass as their mass is 1/1,836 of a proton's mass.
A isotope is two or more forms of the same element that contain equal amounts of protons but different amount of neutrons.
When there are 14c-lable uracil that are added to the growth medium of cells, the macromolecules that will be labled are RNA. Uracil is a nucleobase that make up the DNA or the RNA. In RNA, uracil binds with other nucleobase (adenine) through hydrogen bonds.
Answer:
See Explanation
Explanation:
Metallic bonds involve attraction between electrons and positively charged metal ions. The metals are ionized and electrons form a sea of valence electrons. These loosely bound electrons surround the nuclei of the metals.
The presence of this sea of electrons explains the fact that metals conduct electricity and heat due to the free valence electrons.
Due to the nature of the bonding between metal atoms,metals are malleable and ductile.
Due to the strong electrostatic interaction between metal ions and electrons, the metallic bond is very strong and is very difficult to break thereby accounting for the greater strength of metals as the size of the metallic ion decreases.
Answer:
<h2>127.57 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>127.57 moles</h3>
Hope this helps you