Answer:

Step-by-step explanation:
The function d(x) takes a value of x in degrees centigrade and provides the number of degrees that a container of water at that temperature x is far from the boiling point of water.
The function f(d) takes a value d in degrees centigrade and returns a value d(x) in degrees fahrenheit.
Therefore, by doing f(d(x)) we are introducing the function d(x) within the function f(d).
So the range of d(x) now is the domain of f(d(x))
This means that the function f(d(x)) shows the <em>number of degrees Fahrenheit</em> that a water container at a<em> temperature x in degrees Celsius</em> is far from the boiling point of water.

Answer:
y=t−1+ce
−t
where t=tanx.
Given, cos
2
x
dx
dy
+y=tanx
⇒
dx
dy
+ysec
2
x=tanxsec
2
x ....(1)
Here P=sec
2
x⇒∫PdP=∫sec
2
xdx=tanx
∴I.F.=e
tanx
Multiplying (1) by I.F. we get
e
tanx
dx
dy
+e
tanx
ysec
2
x=e
tanx
tanxsec
2
x
Integrating both sides, we get
ye
tanx
=∫e
tanx
.tanxsec
2
xdx
Put tanx=t⇒sec
2
xdx=dt
∴ye
t
=∫te
t
dt=e
t
(t−1)+c
⇒y=t−1+ce
−t
where t=tanx
Answer:
The answer is probably 10.50
(sorry if im wrong)
Step-by-step explanation:
Answer:
WHY MUST I CRYYYYY
Step-by-step explanation:
Answer:
11.333 infinity
Step-by-step explanation:
when you divide 34 by 3 you then get 11.3 infinity which would also be a repeating decimal