Answercan you upload the pictures??
Explanation:
Ionic bond - If a metal and non metal share a bond
Covalent bond - If two non metals share a bond
Comment if you need more help/information!
Answer:
(a) Cu²⁺ +2e⁻ ⇌ Cu
(c) 0.07 V
Explanation:
(a) Cu half-reaction
Cu²⁺ + 2e⁻ ⇌ Cu
(c) Cell voltage
The standard reduction potentials for the half-reactions are+
<u> E°/V
</u>
Cu²⁺ + 2e⁻ ⇌ Cu; 0.34
Hg₂Cl₂ + 2e⁻ ⇌ 2Hg + 2Cl⁻; 0.241
The equation for the cell reaction is
E°/V
Cu²⁺(0.1 mol·L⁻¹) + 2e⁻ ⇌ Cu; 0.34
<u>2Hg + 2Cl⁻ ⇌ Hg₂Cl₂ + 2e⁻; </u> <u>-0.241
</u>
Cu²⁺(0.1 mol·L⁻¹) + 2Hg + 2Cl⁻ ⇌ Cu + Hg₂Cl₂; 0.10
The concentration is not 1 mol·L⁻¹, so we must use the Nernst equation
(ii) Calculations:
T = 25 + 273.15 = 298.15 K
![Q = \dfrac{\text{[Cl}^{-}]^{2}}{ \text{[Cu}^{2+}]} = \dfrac{1}{0.1} = 10\\\\E = 0.10 - \left (\dfrac{8.314 \times 298.15 }{2 \times 96485}\right ) \ln(10)\\\\=0.010 -0.01285 \times 2.3 = 0.10 - 0.03 = \textbf{0.07 V}\\\text{The cell potential is }\large\boxed{\textbf{0.07 V}}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BCl%7D%5E%7B-%7D%5D%5E%7B2%7D%7D%7B%20%5Ctext%7B%5BCu%7D%5E%7B2%2B%7D%5D%7D%20%3D%20%5Cdfrac%7B1%7D%7B0.1%7D%20%3D%2010%5C%5C%5C%5CE%20%3D%200.10%20-%20%5Cleft%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298.15%20%7D%7B2%20%5Ctimes%2096485%7D%5Cright%20%29%20%5Cln%2810%29%5C%5C%5C%5C%3D0.010%20-0.01285%20%5Ctimes%202.3%20%3D%200.10%20-%200.03%20%3D%20%5Ctextbf%7B0.07%20V%7D%5C%5C%5Ctext%7BThe%20cell%20potential%20is%20%7D%5Clarge%5Cboxed%7B%5Ctextbf%7B0.07%20V%7D%7D)
Answer:
in nuclear fusion deep in the interiors of stars
Explanation:
Nuclear fusion -
It is the type of reaction , where two or more atomic nuclei of the atom merges together to release two or more different nuclei along with some subatomic particles , is referred to as a nuclear fusion reaction .
The reaction can very well be done on stars , because of very high energy .
Hence , a nuclear fusion occurs deep inside the stars .
Explanation:
First, we will calculate the molar mass of
as follows.
Molar mass of
=
= 78 g/mol
So, when 2 mol of
burns, then heat produced = 6542 KJ
Hence, this means that 2 molecules of
are equal to
of
burns, heat produced = 6542 KJ
Therefore, heat produced by burning 5.5 g of
=
= 228.97 kJ
= 228970 J (as 1 kJ = 1000 J)
It if given that for water, m = 5691 g
And, we know that specific heat capacity of water is 4.186
.
As, Q =
228970 J = 

Thus, we can conclude that the final temperature of the water is
.