I am pretty sure that the statement which is true is A. a molecule having a covalent bond can be ionic. I choose this option because you usually ca see how electons of polyatomic ions are being covalenr and gain or loose ionic electrons in order to accomplish the octet.<span>
</span>Do hope you find it helpful! Regards.
Answer:62.66°C or 235.66K
Explanation:Q=McpT, the energy was given in calories so you first convert to Joules by multiplying the value in calories by 4.184J.
17*4.184=71.128kJ.
71.128kJ=mcpT
71.128kJ=245*4.187*(T-Tm)
Tm is the final temperature of the mixture. The T is the temperature given which should be converted to Kelvin by adding 273...T=32+273=305K.
71128J=245*4.187*(305-Tm)
71128=312873.575-1025.815Tm
1025.815Tm=312873.575-71128
1025.815Tm=241745.58
Tm=241745.58/1025.815
Tm=235.66K
We need to increase the concentration of common ion first, in order to promote the common ion effect
<h3>What is the Common ion effect?</h3>
It is an effect that suppresses the dissociation of salt due to the addition of another salt having common ions.
For example, a saturated solution of silver chloride in equilibrium has Ag⁺ and Cl⁻ . Sodium Chloride is added to the solution and has a common ion Cl⁻. As a result, the equilibrium shifts to the left to form more silver chloride. Thus, solubility of AgCl decreases.
The Equilibrium law states that if a process is in equilibrium and is subjected to a change
- in temperature,
- pressure,
- the concentration of reactant or product,
then the equilibrium shifts in a particular direction, according to the condition.
Thus, an increase in the concentration of common ion promotes the common ion effect.
Learn more about common ion effect:
brainly.com/question/23684003
#SPJ4
Low clouds
Stratus clouds are uniform grayish clouds that often cover the sky. Usually no precipitation falls from stratus clouds, but they may drizzle. When a thick fog “lifts,” the resulting clouds are low stratus. Nimbostratus clouds form a dark gray, “wet” looking cloudy layer associated with continuously falling rain or snow. They often produce light to moderate precipitation.
Middle clouds
Clouds with the prefix “alto” are middle-level clouds that have bases at 6,500 to 23,000 feet up. Altocumulus clouds are made of water droplets and appear as gray, puffy masses, sometimes rolled out in parallel waves or bands. These clouds on a warm, humid summer morning often mean thunderstorms by late afternoon. Altostratus clouds, gray or blue-gray, are made up of ice crystals and water droplets. They usually cover the sky. In thinner areas of them, the sun may be dimly visible as a round disk. Altostratus clouds often form ahead of storms that produce continuous precipitation.
High clouds
Cirrus clouds are thin, wispy clouds blown by high winds into long streamers. They are considered “high clouds,” forming at more than 20,000 feet. They usually move across the sky from west to east and generally mean fair to pleasant weather. Cirrostratus, thin, sheetlike clouds that often cover the sky, are so thin the sun and moon can be seen through them. Cirrocumulus clouds appear as small, rounded white puffs. Small ripples in the cirrocumulus sometimes resemble the scales of a fish, creating what is sometimes called a “mackerel sky.”
Vertical clouds
Cumulus clouds are puffy and can look like floating cotton. The base of each is often flat and may be only 330 feet above ground. The top has rounded towers. When the top resembles a cauliflower head, it is called “cumulus congestus.” These grow upward and if they continue to grow vertically can develop into a giant cumulonimbus, a thunderstorm cloud, with dark bases no more than 1,000 feet above ground and extending to more than 39,000 feet. Tremendous energy is released by condensation of water vapor in a cumulonimbus. Lightning, thunder and violent tornadoes are associated with them.
Pure chemistry: gain knowledge for own pleasure
Applied chemistry: gain knowledge to know how to use it