The given equation for the relationship between a planet's orbital period, T and the planet's mean distance from the sun, A is T^2 = A^3.
Let the orbital period of planet X be T(X) and that of planet Y = T(Y) and let the mean distance of planet X from the sun be A(X) and that of planet Y = A(Y), then
A(Y) = 2A(X)
[T(Y)]^2 = [A(Y)]^3 = [2A(X)]^3
But [T(X)]^2 = [A(X)]^3
Thus [T(Y)]^2 = 2^3[T(X)]^2
[T(Y)]^2 / [T(X)]^2 = 2^3
T(Y) / T(X) = 2^3/2
Therefore, the orbital period increased by a factor of 2^3/2
<span>
</span>
Answer:
The first one or A because 3 times 2 is 6 and 4 times 2 is 8.
Answer:
The answer is letter D.
Step-by-step explanation:
hope this helps
Answer:
Factor −6x+30
−6x+30
=6(−x+5)
Step-by-step explanation:
That's all there is
See attached picture for answer