-3|x-3|=-6
divide both sides by -3
|x-3|=2
assume
x-3=2 and
x-3=-2
x-3=2
add 3
x=5
x-3=-2
add 3
x=1
x=5 or 1
This then allows us to see exactly how and where the subtended angle θ of a sector will fit into the sector formulas. Now we can replace the "once around" angle (that is, the 2π) for an entire circle with the measure of a sector's subtended angle θ, and this will give us the formulas for the area and arc length of that sector
Answer:
24.5 unit²
Step-by-step explanation:
Area of ∆
= ½ | x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) |
= ½ | (-1)(3 -(-4)) + 6(-4 -3) + (-1)(3 - 3) |
= ½ | -7 - 42 |
= ½ | - 49 |
= ½ (49)
= 24.5 unit²
<u>Method 2:</u>
Let the vertices are A, B and C. Using distance formula:
AB = √(-1-6)² + (3-3)² = 7
BC = √(-6-1)² + (-4-3)² = 7√2
AC = √(-1-(-1))² + (4-(-3))² = 7
Semi-perimeter = (7+7+7√2)/2
= (14+7√2)/2
Using herons formula:
Area = √s(s - a)(s - b)(s - c)
here,
s = semi-perimeter = (14 + 7√2)/2
s - a = S - AB = (14+7√2)/2 - 7 = (7 + √2)/2
s - b = (14+7√2)/2 - 7√2 = (14 - 7√2)/2
s - c = (14+7√2)/2 - 7 = (7 + √2)/2
Hence, on solving for area using herons formula, area = 49/2 = 24.5 unit²
Answer:

Step-by-step explanation:
The given equation is 
We want to rearrange this equation so that, n becomes the independent variable.
This means we must solve form, m which becomes the dependent variable.
We expand the parenthesis to get:

We now subtract 1 from both sides to obtain:

We simplify to obtain:

This can be rewritten as

Answer:
For the first answer, I believe it to be A.
Step-by-step explanation:
For the top question, the only one that could come after 0.038 would be A.