Answer:
Y is a 3-chloro-3-methylpentane.
The structure is shown in the figure attached.
Explanation:
The radical chlorination of 3-methylpentane can lead to a tertiary substituted carbon (Y) and to a secondary one (X).
The E2 elimination mechanism, as shown in the figure, will happen with a simulyaneous attack from the base and elimination of the chlorine. This means that primary and secondary substracts undergo the E2 mechanism faster than tertiary substracts.
Answer:
The answer is
<h2>112.912 kPa</h2>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is

Since we are finding the new pressure

404.6 kPa = 404600 Pa
From the question we have

We have the final answer as
<h3>112.912 kPa</h3>
Hope this helps you
M₁ = mass of water = 75 g
T₁ = initial temperature of water = 23.1 °C
c₁ = specific heat of water = 4.186 J/g°C
m₂ = mass of limestone = 62.6 g
T₂ = initial temperature of limestone = ?
c₂ = specific heat of limestone = 0.921 J/g°C
T = equilibrium temperature = 51.9 °C
using conservation of heat
Heat lost by limestone = heat gained by water
m₂c₂(T₂ - T) = m₁c₁(T - T₁)
inserting the values
(62.6) (0.921) (T₂ - 51.9) = (75) (4.186) (51.9 - 23.1)
T₂ = 208.73 °C
in three significant figures
T₂ = 209 °C
Answer : This reaction is an exothermic reaction.
Explanation :
Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.
In the endothermic reaction, the energy of reactant are less than the energy of product.
Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.
In the exothermic reaction, the energy of reactant are more than the energy of product.
Enthalpy of reaction : It is the difference between the energy of product and the reactant. It is represented as
.
The balanced chemical reaction will be:

From the reaction we conclude that the heat energy is released during the reaction that means this reaction is an exothermic reaction.
Hence, the reaction is an exothermic reaction.