Answer:
A leaf needs carbon dioxide and water for photosynthesis. ... For carbon dioxide to enter, the stomata on the surface of the leaf must be open. As you have seen, transpiration draws water from the roots into the leaf mesophyll.
I hope this helps you :)
Answer:
Na₂₆F₁₁
Explanation:
We find the moles of the substance assuming 100 g of the substance is present. Why do we take 100 g? Because then the percent of sodium/fluorine, would be the g of sodium/fluorine respectively:
74.186 g Sodium | 1 mol Sodium/23 g => 3.2255 mol Na
25.814 g Fluorine | 1 mol Fluorine/19 g => 1.3586 mol F
Divide each by smallest number of moles:
3.2255/1.3586 = 2.37
1.3586/1.3586 = 1
Multiply by common number to get a smallest whole number:
2.37*11 = 26,
1*11 = 11
The empirical formula is Na₂₆F₁₁
The equilibrium constant is 1.3 considering the reaction as written in the question.
<h3>Equilibrium in chemical reactions</h3>
In a chemical reaction, the equilibrium constant is calculated based on the equilibrium concentration of each specie. The equation of this reaction is;
A (g) + 2B (g) ⇌ 3C (g).
The initial concentration of each specie is;
- A - 9.22 M
- B - 10.11 M
- C - 27.83 M
The equilibrium concentration of B is 18.32 M
We now have to set up the ICE table as follows;
A (g) + 2B (g) ⇌ 3C (g)
I 9.22 10.11 27.83
C -x -x +x
E 9.22 - x 10.11 - x 27.83 + x
The equilibrium concentration of B is 18.32 M hence;
10.11 - x = 18.32
x = 10.11 - 18.32 = -8.21
Hence;
Equilibrium concentration of A = 9.22 - (-8.21) = 17.43
Equilibrium concentration of C = 27.83 + (-8.21) = 19.62
Equilibrium constant K = [19.62]^3/[17.43] [18.32]^2
K = 1.3
Learn more about equilibrium constant: brainly.com/question/17960050