Answer:
Metallic bonding is found in metals and their alloys. When the atoms give up their valence electrons, they form ions. These ions are held together by the electron cloud surrounding them. Metals are shiny because they have a lot of free (i.e. delocalized) electrons that form a cloud of highly mobile negatively charged electrons on and beneath the smooth metal surface in the ideal case. ... In the absence of any external EM field, the charges in the plasma are uniformly distributed within the metal.
Explanation:
In metallic bonding, the electrons are “surrendered” to a common pool and become shared by all the atoms in the solid metal.
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si * = 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂