We have two unknowns: x and y. Now, we have to formulate 2 equations. The first would come from the use of the given ratio:
We use the distance formula to find the distance between coordinates:
3/4 = √[(x-4)²+(y-1)²] / √[(4-12)²+(1-5)²]
√[(x-4)²+(y-1)²] = 3√5
(x-4)²+(y-1)² = 45
x² - 8x + 16 + y² - 2y + 1 = 45
x² - 8x + y² - 2y = 28 --> eqn 1
The second equation must come from the equation of a line:
y = mx +b
m = (5-1)/(12-4) = 1/2
Substitute y=5 and x=12 for point (12,5)
5 = (1/2)(12) + b
b = -1
So, the second equation is
y = 1/2x -1 or x = 2 + 2y --> eqn 2
Solving the equations simultaneously:
(2 + 2y)² - 8(2 + 2y) + y² - 2y = 28
Solving for y,
y = -2
x = 2+2(-2) = -2
Therefore, the coordinates of point A is (-2,-2).
Let X be the national sat score. X follows normal distribution with mean μ =1028, standard deviation σ = 92
The 90th percentile score is nothing but the x value for which area below x is 90%.
To find 90th percentile we will find find z score such that probability below z is 0.9
P(Z <z) = 0.9
Using excel function to find z score corresponding to probability 0.9 is
z = NORM.S.INV(0.9) = 1.28
z =1.28
Now convert z score into x value using the formula
x = z *σ + μ
x = 1.28 * 92 + 1028
x = 1145.76
The 90th percentile score value is 1145.76
The probability that randomly selected score exceeds 1200 is
P(X > 1200)
Z score corresponding to x=1200 is
z = 
z = 
z = 1.8695 ~ 1.87
P(Z > 1.87 ) = 1 - P(Z < 1.87)
Using z-score table to find probability z < 1.87
P(Z < 1.87) = 0.9693
P(Z > 1.87) = 1 - 0.9693
P(Z > 1.87) = 0.0307
The probability that a randomly selected score exceeds 1200 is 0.0307
We can simplfiy to be 
.
We know that
is 10 and
is i, so the answer is 10i, or D.
Answer:
Elon Musk
CEO of Tesla Motors
Elon Reeve Musk FRS is a business magnate, industrial designer, and engineer. He is the founder, CEO, CTO, and chief designer of SpaceX; early stage investor, CEO,