So we want to see which number line shows the sum 1.5 + 2.5. We will see that the correct option is <u>"An arrow goes from 0 to 1. 5 and from 1. 5 to 4"</u>
So the number line usually starts at 0 and goes to the first number, 1.5 in this case.
Then, it moves accordingly to the second number, 2.5 (so it will move 2.5 units to the right)
So the number line should start at 0 and move to the right until it meets 1.5 + 2.5 = 4.
From the options, the only that is correct is:
<u><em>"An arrow goes from 0 to 1. 5 and from 1. 5 to 4"</em></u>
If you want to learn more about number lines, you can read:
brainly.com/question/10851163
Part 1:
After payment of $300, remaining balance = $2,348.62 - $300 = $2,048.62.
Interest accrued is given by:

Had it been $600 was paid, remaining balance = $2,348.62 - $600 = $1748.62. Interest accrued is given by:

Difference in interest accrued = $14.94 - $12.75 = $2.19
Part 2:
The present value of an annuity is given by:
![PV= \frac{P\left[1-\left(1+ \frac{r}{12} \right)^{-12n}\right]}{ \frac{r}{12} }](https://tex.z-dn.net/?f=PV%3D%20%5Cfrac%7BP%5Cleft%5B1-%5Cleft%281%2B%20%5Cfrac%7Br%7D%7B12%7D%20%5Cright%29%5E%7B-12n%7D%5Cright%5D%7D%7B%20%5Cfrac%7Br%7D%7B12%7D%20%7D)
Where PV is the amount to be repaid, P is the equal monthly payment, r is the annual interest rate and n is the number of years.
Thus,
![2348.62= \frac{600\left[1-\left(1+ \frac{0.0875}{12}\right)^{-12n}\right]}{\frac{0.0875}{12}} \\ \\ \Rightarrow 1-(1+0.007292)^{-12n}= \frac{2348.62\times0.0875}{12\times600} =0.028542 \\ \\ \Rightarrow(1.007292)^{-12n}=1-0.028542=0.971458 \\ \\ \Rightarrow \log(1.007292)^{-12n}=\log0.971458 \\ \\ \Rightarrow-12n\log1.007292=\log0.971458 \\ \\ \Rightarrow-12n= \frac{\log0.971458}{\log1.007292} =-3.985559 \\ \\ \Rightarrow n= \frac{-3.985559}{-12} =0.332130](https://tex.z-dn.net/?f=2348.62%3D%20%5Cfrac%7B600%5Cleft%5B1-%5Cleft%281%2B%20%5Cfrac%7B0.0875%7D%7B12%7D%5Cright%29%5E%7B-12n%7D%5Cright%5D%7D%7B%5Cfrac%7B0.0875%7D%7B12%7D%7D%20%20%5C%5C%20%20%5C%5C%20%5CRightarrow%201-%281%2B0.007292%29%5E%7B-12n%7D%3D%20%5Cfrac%7B2348.62%5Ctimes0.0875%7D%7B12%5Ctimes600%7D%20%3D0.028542%20%5C%5C%20%20%5C%5C%20%5CRightarrow%281.007292%29%5E%7B-12n%7D%3D1-0.028542%3D0.971458%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Clog%281.007292%29%5E%7B-12n%7D%3D%5Clog0.971458%20%5C%5C%20%20%5C%5C%20%5CRightarrow-12n%5Clog1.007292%3D%5Clog0.971458%20%5C%5C%20%20%5C%5C%20%5CRightarrow-12n%3D%20%5Cfrac%7B%5Clog0.971458%7D%7B%5Clog1.007292%7D%20%3D-3.985559%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20n%3D%20%5Cfrac%7B-3.985559%7D%7B-12%7D%20%3D0.332130)
Therefore, the number of months it will take to pay of the debt is 3.99 months which is approximately 4 months.
Answer:
I can't see the graph
Step-by-step explanation: