Answer:- The right choice is A.
.
Solution:- Latent heat of fusion means the heat required to melt the solid at constant temperature means there is no change in temperature only the solid changes to liquid. So, it is a solid to liquid phase change.

where q is the heat required to convert solid to liquid, m is the mass and
is the latent heat of fusion.
From given info, 550 kJ that is 550000 J of heat is required to melt 14 kg of solid at 262K temperature. Let's rearrange the equation for latent heat of fusion and plug in the values in it.


= 
If we round this value to two sig figs and write in scientific notations then it becomes
.
So, the right choice is A.
.
Answer:
Results
The percent error between 20 and 20.5 is 2.5%
Explanation:
Percent Error = | (20.5 − 20) / 20 | × 100 = | (0.5) / 20 | × 100 = | 0.025 | × 100 = 2.5% (three decimal places)Percent Error = 2.5%
Ra, would have the lowest ionization energy. Remember ionization energy increases going up and to the right.
The correct answer is higher melting point, bound by metal metal bonds.
While alkali metals only have one valence electron, alkaline earth metals have two. Metal to metal connections hold the metals together. Alkaline earth metals have a stronger metallic connection and a higher melting point because they have two valence electrons.
the characteristics that Group 2 metals excel in over Group 1 metals.
- Initial Ionization Potential
- Group 2 items are more difficult than group 1 elements.
- Strong propensity to produce bivalent compounds
As a result, group 2 metals have stronger metallic bonding, which leads to increased cohesive energy and compact atom packing. This explains why group 2 metals are harder and have higher melting and boiling temperatures than group 1 metals.
To learn more about Group 2A(2) refer the link:
brainly.com/question/9431096
#SPJ4