Based on the weight and the model that is given, it should be noted that W(t) in radians will be W(t) = 0.9cos(2πt/366) + 8.2.
<h3>
How to calculate the radian.</h3>
From the information, W(t) = a cos(bt) + d. Firstly, calculate the phase shift, b. At t= 0, the dog is at maximum weight, so the cosine function is also at a maximum. The cosine function is not shifted, so b = 1.
Then calculate d. The dog's average weight is 8.2 kg, so the mid-line d = 8.2. W(t) = a cos t + 8.2. Then calculate a, the dog's maximum weight is 9.1 kg. The deviation from the average is 9.1 kg - 8.2 kg = 0.9 kg. W(t) = 0.9cost + 8.2
Lastly, calculate t. The period p = 2π/b = 2π/1 = 2π. The conversion factor is 1 da =2π/365 rad. Therefore, the function with t in radians is W(t) = 0.9cos(2πt/365) + 8.2.
Learn more about radians on:
brainly.com/question/12939121
Answer:
the 3rd option
Step-by-step explanation:
Because the domain (x) repeats the number 2 of the ordered pairs: (<u>2</u>,3) and (<u>2</u>,9)
Answer:
4cotα=tanα
4(1/tanα)=tanα
(4/tanα)=tanα
cross multiply
=> 4=tan²α
√4=√tan²α
±2=tanα
α=arc( tan) |2|
α=63.4° ( in first quadrant)
and
α=180+63.4=243.4 in the third quadrant
since we also found a negative answer( i.e –2) then α also lies in quadrants where it gives a negative value(i.e second and fourth quadrants)
α=180–63.4=116.6° in the second quadrant
α=360–63.4=296.6 in the fourth quadrant
therefore theta( in my case, alpha) lies in all four quadrants and is equal to:
α=63.4°,243.4°,116.6°and 296.6°
Answer:
option d.opposite / adjacent
Step-by-step explanation:
opposite /adjacent ratio represents the tangent of an angle .
hope it is helpful to you ☺️
I think it is 2,504.
when you round 2,505 it comes out to 2,510.