Yes, yes it is equal. is there a picture or graph or something?
![\bf \begin{cases} x=1\implies &x-1=0\\ x=1\implies &x-1=0\\ x=-\frac{1}{2}\implies 2x=-1\implies &2x+1=0\\ x=2+i\implies &x-2-i=0\\ x=2-i\implies &x-2+i=0 \end{cases} \\\\\\ (x-1)(x-1)(2x+1)(x-2-i)(x-2+i)=\stackrel{original~polynomial}{0} \\\\\\ (x-1)^2(2x+1)~\stackrel{\textit{difference of squares}}{[(x-2)-(i)][(x-2)+(i)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D-%5Cfrac%7B1%7D%7B2%7D%5Cimplies%202x%3D-1%5Cimplies%20%262x%2B1%3D0%5C%5C%0Ax%3D2%2Bi%5Cimplies%20%26x-2-i%3D0%5C%5C%0Ax%3D2-i%5Cimplies%20%26x-2%2Bi%3D0%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%28x-1%29%282x%2B1%29%28x-2-i%29%28x-2%2Bi%29%3D%5Cstackrel%7Boriginal~polynomial%7D%7B0%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%5E2%282x%2B1%29~%5Cstackrel%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B%28x-2%29-%28i%29%5D%5B%28x-2%29%2B%28i%29%5D%7D)
![\bf (x^2-2x+1)(2x+1)~[(x-2)^2-(i)^2] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)-(-1)] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)+1] \\\\\\ (x^2-2x+1)(2x+1)~[x^2-4x+5] \\\\\\ (x^2-2x+1)(2x+1)(x^2-4x+5)](https://tex.z-dn.net/?f=%5Cbf%20%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x-2%29%5E2-%28i%29%5E2%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29-%28-1%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29%2B1%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5Bx%5E2-4x%2B5%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29%28x%5E2-4x%2B5%29)
of course, you can always use (x-1)(x-1)(2x+1)(x²-4x+5) as well.
Answer:
(x - 5)² + (y + 7)² = 81
Step-by-step explanation:
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius
Here (h, k) = (5, - 7) and r = 9, thus
(x - 5)² + (y - (- 7))² = 9², that is
(x - 5)² + (y + 7)² = 81 ← equation of circle
Let's see what the options look like when we multiply the expressions in brackets:
(first, i multiply both parts of the second bracked by the first part of the first bracket, and then the same with the second part of the first bracket:
<span>(1) (3x - 3)(x - 2))
3x2 +6x -3x +6// this is not correct
(2) (3x + 3)(x - 2) </span>
3x2-6x+3x-6//this is not correct
(3)
3(x + 1)(x - 2)
3(x2-2x+x-2)//simplifying:
3(x2-x-2)//multiplying:
3x2-3x-6)
- so this is not correct either
(4) 3(x - 1)(x - 2)
3(x2-2x - x + 2)
3(x2-3x +2)
3x2-9x +6 - well, here is our winner!