<span>The three major types of
symbiosis are mutualism, where both species benefit, commensalism, where
one species benefits and the other is unaffected, and parasitism, where
one species benefits and the other is harmed. Symbiotic relationships can occur within an organism's body or outside of it. </span><span>Examples of mutualism include the
relationship between single-celled organisms or animals that incorporate
algae into their bodies. They give the algae necessary nutrients, and
in return receive chemical energy from the photosynthetic algae. Animals
that have this sort of relationship include some sponges, sea anemones
and clams.
Examples of commensalism include remora fish attaching to the bodies
of sharks and eating scraps of food that escape their jaws, and
barnacles living on the jaws of whales with a similar feeding strategy.
Plants have commensal relationships as well, such as many orchids that
grow on taller plants and benefit from the additional sunlight they
obtain, without actually stealing nutrients from the host plant.
Parasitic relationships are many, and parasites include all
disease-causing organisms. This category also includes insects such as
fleas that suck the blood of hosts externally. Parasitism is a very
efficient strategy for organisms, and parasites often lose many of the
features of non-parasitic life forms, instead relying on their hosts for
many of the functions of life.</span>
Answer:
129.96
At a Gravitational acceleration of 32.17405 ( which is the normal rate for a freefall) you will geta velocity of 129.96 and the time of fall will be 4.039 seconds from 80 meters.
Why is the weight of a free falling body zero? It is not, an object in free fall will still have a weight, governed by the equation W = mg, where W is the object's weight, m is the object's mass, and g is acceleration due to gravity. Weight, however, has no effect on an objects free falling speed, two identically shaped objects weighing a different amount will hit the ground at the same time.
Hope this helps!! If so please mark brainliest and rate/heart to help my account if it did!!
Answer:
As a positively charged object moves toward another positively charged object, their potential energy increases. True
As a negatively charged object moves toward another negatively charged object, their potential energy increases True
Explanation:
When two like charges move towards each other, there is increase in potential energy because the motion is in opposition to the direction if the field. Hence when two negative or two positive charges move towards each other, there is an increase in potential energy.
However, potential energy is inversely related to the distance of separation of the charges.
Answer:
IMA is always larger than the AMA
Explanation:
IMA is Ideal Mechanical Advantage and it equals the length of effort that is divided by the length of resistance which is given by the formula
IMA= Fr/Fe
Where Fr is the resistance force
Fe is the effort force.
IM= de/dr
Where de is the distance of the applied effort
dr is the distance traveled by the load.
In any real machine, the effort is needed to overcome friction and because of this, the ideal mechanical advantage(IMA) is always larger than the actual mechanical advantage (AMA)
Answer:
The two forces acting on a boat or some other floating object are buoyancy and gravity