<span>The three major types of
symbiosis are mutualism, where both species benefit, commensalism, where
one species benefits and the other is unaffected, and parasitism, where
one species benefits and the other is harmed. Symbiotic relationships can occur within an organism's body or outside of it. </span><span>Examples of mutualism include the
relationship between single-celled organisms or animals that incorporate
algae into their bodies. They give the algae necessary nutrients, and
in return receive chemical energy from the photosynthetic algae. Animals
that have this sort of relationship include some sponges, sea anemones
and clams.
Examples of commensalism include remora fish attaching to the bodies
of sharks and eating scraps of food that escape their jaws, and
barnacles living on the jaws of whales with a similar feeding strategy.
Plants have commensal relationships as well, such as many orchids that
grow on taller plants and benefit from the additional sunlight they
obtain, without actually stealing nutrients from the host plant.
Parasitic relationships are many, and parasites include all
disease-causing organisms. This category also includes insects such as
fleas that suck the blood of hosts externally. Parasitism is a very
efficient strategy for organisms, and parasites often lose many of the
features of non-parasitic life forms, instead relying on their hosts for
many of the functions of life.</span>
We Know, K.E. = 1/2 × m × v² From the expression, we can conclude that Kinetic energy is directly proportional to mass. So, as mass will increase, Kinetic energy will also increase.
Motors convert electrical energy into mechanical energy
Explanation:
A motor uses electrical energy to create mechanical energy by creating magnetic fields causing the motor to spin. A generator is the opposite and converts mechanical into electrical by spinning a motor in a magnetic field.
When you use a compound pulley the force required depends on the mechanical advantage of the compound pulley. This is known as rate of loss of distance or the ratio of the force to the load.
M.A = Effort distance /Load distance. OR M.A = Load/Effort
For a body moving at a uniform velocity you can calculate the speed by dividing the distance traveled by the amount of time it took, for example one mile in 1/2 hour would give you 2 miles per hour. If the velocity is non-uniform all you can say is what the average speed is.