<h2>
Spring constant is 14.72 N/m</h2>
Explanation:
We have for a spring
Force = Spring constant x Elongation
F = kx
Here force is weight of mass
F = W = mg = 0.54 x 9.81 = 5.3 N
Elongation, x = 36 cm = 0.36 m
Substituting
F = kx
5.3 = k x 0.36
k = 14.72 N/m
Spring constant is 14.72 N/m
Answer:
Time, t = 0.015 seconds.
Explanation:
Given the following data;
Mass, m = 0.2kg
Force, F = 200N
Initial velocity, u = 40m/s
Final velocity, v = 25m/s
To find the time;
Ft = m(v - u)
Time, t = m(v - u)/f
Substituting into the equation, we have;
Time, t = 0.2(25 - 40)/200
Time, t = 0.2(-15)/200
Time, t = 3/200
Time, t = 0.015 seconds.
Note: We ignored the negative sign because time can't be negative.
Answer:
Both eggs are identical. The aim is to find out the highest floor from which an egg will not break when dropped out of a window from that floor. If an egg is dropped and does not break, it is undamaged and can be dropped again. However, once an egg is broken, that's it for that egg.
Answer:
toward the center
Explanation:
Before answering, let's remind the first two Newton Laws:
1) An object at rest tends to stay at rest and an object moving at constant velocity tends to continue its motion at constant velocity, unless acted upon a net force
2) An object acted upon a net force F experiences an acceleration a according to the equation

where m is the mass of the object.
In this problem, we have an object travelling at constant speed in a circular path. The fact that the trajectory of the object is circular means that the direction of motion of the object is constantly changing: this means that its velocity is changing, so it has an acceleration. And therefore, a net force is acting on it. The force that keeps the object travelling in the circular path is called centripetal force, and it is directed towards the center of the circle (because it prevents the object from continuing its motion straight away).
So, the correct answer is
toward the center