Answer:
The sequence is arithmetic
we know that
In an arithmetic sequence, the difference between consecutive terms is always the same and is called common difference
In this problem we have
3,9,15,21,...
Let
a1=3, a2=9,a3=15,a4=21
a4-a3=21-15=6
a3-a2=15-9=6
a2-a1=9-3=6
The sequence is arithmetic
The common difference is equal to
tis noteworthy that the segment contains endpoints of A and C and the point B is in between A and C cutting the segment in a 1:2 ratio,
![\bf \textit{internal division of a line segment using ratios} \\\\\\ A(-9,-7)\qquad C(x,y)\qquad \qquad \stackrel{\textit{ratio from A to C}}{1:2} \\\\\\ \cfrac{A\underline{B}}{\underline{B} C} = \cfrac{1}{2}\implies \cfrac{A}{C}=\cfrac{1}{2}\implies 2A=1C\implies 2(-9,-7)=1(x,y)\\\\[-0.35em] ~\dotfill\\\\ B=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%20using%20ratios%7D%20%5C%5C%5C%5C%5C%5C%20A%28-9%2C-7%29%5Cqquad%20C%28x%2Cy%29%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20A%20to%20C%7D%7D%7B1%3A2%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7BA%5Cunderline%7BB%7D%7D%7B%5Cunderline%7BB%7D%20C%7D%20%3D%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20%5Ccfrac%7BA%7D%7BC%7D%3D%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%202A%3D1C%5Cimplies%202%28-9%2C-7%29%3D1%28x%2Cy%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20B%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf B=\left(\cfrac{(2\cdot -9)+(1\cdot x)}{1+2}\quad ,\quad \cfrac{(2\cdot -7)+(1\cdot y)}{1+2}\right)~~=~~(-4,-6) \\\\[-0.35em] ~\dotfill\\\\ \cfrac{(2\cdot -9)+(1\cdot x)}{1+2}=-4\implies \cfrac{-18+x}{3}=-4 \\\\\\ -18+x=-12\implies \boxed{x=6} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{(2\cdot -7)+(1\cdot y)}{1+2}=-6\implies \cfrac{-14+y}{3}=-6 \\\\\\ -14+y=-18\implies \boxed{y=-4}](https://tex.z-dn.net/?f=%5Cbf%20B%3D%5Cleft%28%5Ccfrac%7B%282%5Ccdot%20-9%29%2B%281%5Ccdot%20x%29%7D%7B1%2B2%7D%5Cquad%20%2C%5Cquad%20%5Ccfrac%7B%282%5Ccdot%20-7%29%2B%281%5Ccdot%20y%29%7D%7B1%2B2%7D%5Cright%29~~%3D~~%28-4%2C-6%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B%282%5Ccdot%20-9%29%2B%281%5Ccdot%20x%29%7D%7B1%2B2%7D%3D-4%5Cimplies%20%5Ccfrac%7B-18%2Bx%7D%7B3%7D%3D-4%20%5C%5C%5C%5C%5C%5C%20-18%2Bx%3D-12%5Cimplies%20%5Cboxed%7Bx%3D6%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B%282%5Ccdot%20-7%29%2B%281%5Ccdot%20y%29%7D%7B1%2B2%7D%3D-6%5Cimplies%20%5Ccfrac%7B-14%2By%7D%7B3%7D%3D-6%20%5C%5C%5C%5C%5C%5C%20-14%2By%3D-18%5Cimplies%20%5Cboxed%7By%3D-4%7D)
Step-by-step explanation:
lines which do not intersect are always parallel and the answer will be parallel lines only...
Answer:
19/28juice wrld is not gone he is sippn juice in a better wrld