I'm guessing that the >= is a greater than or equal to sign, so the answer should be d>=2 and d<2, please tell me if I am wrong and I will do my best to correct it!
Answer:
D
Step-by-step explanation:
![f(x)=(x-1)(x^2+2)^3\\f'(x)=(x-1)*3(x^2+2)^2*2x+(x^2+2)^3*1\\f'(x)=6x(x-1)(x^2+2)^2+(x^2+2)^3\\f'(x)=(x^2+2)^2[6x^2-6x+x^2+2]\\f'(x)=(x^2+2)^2(7x^2-6x+2)\\D](https://tex.z-dn.net/?f=f%28x%29%3D%28x-1%29%28x%5E2%2B2%29%5E3%5C%5Cf%27%28x%29%3D%28x-1%29%2A3%28x%5E2%2B2%29%5E2%2A2x%2B%28x%5E2%2B2%29%5E3%2A1%5C%5Cf%27%28x%29%3D6x%28x-1%29%28x%5E2%2B2%29%5E2%2B%28x%5E2%2B2%29%5E3%5C%5Cf%27%28x%29%3D%28x%5E2%2B2%29%5E2%5B6x%5E2-6x%2Bx%5E2%2B2%5D%5C%5Cf%27%28x%29%3D%28x%5E2%2B2%29%5E2%287x%5E2-6x%2B2%29%5C%5CD)
Answer:
The length of the rectangle (l) = 3 feet
The width of the rectangle (W) = 10 feet
Step-by-step explanation:
<u><em>Step(i):-</em></u>
<em>Given that the width of the rectangle = (x+1) feet</em>
<em>Given that the length of the rectangle = ( x-6) feet</em>
<em>The area of the rectangle = 30 square feet</em>
<u><em>Step(ii):-</em></u>
We know that the area of the rectangle
= length ×width
30 = ( x+1)(x-6)
30 = x² - 6x + x -6
⇒ x² - 5 x - 6 = 30
⇒ x² - 5 x - 6 - 30 =0
⇒ x² - 5 x - 36 =0
x² - 9 x +4x - 36 =0
x (x-9) +4 ( x-9) =0
( x+4 ) ( x-9) =0
( x+4 ) =0 and ( x-9) =0
x =-4 and x =9
<u><em>Step(iii):-</em></u>
we have to choose x =9
The length of the rectangle (l) = x-6 = 9-6 =3
The width of the rectangle (W) = x+1 = 9 +1 = 10
<u><em>Final answer:-</em></u>
The length of the rectangle (l) = 3 feet
The width of the rectangle (W) = 10 feet
The answer choice which explains that the three segments cannot be used to construct a triangle is; AC + CB < AB.
<h3>Which inequality explains why the three segments cannot be used to construct a triangle?</h3>
Since, It follows from the triangle inequalities theorem that sum of the side lengths of any two sides of a triangle is greater than the length of the third side.
Hence, since the sum of sides AC + CB is less than AB, it follows that the required inequality is; AC + CB < AB.
Read more on triangle inequalities;
brainly.com/question/309896
#SPJ1