Answer:
672 ways
Step-by-step explanation:
The total number of ways the friends were supposed to sit without restrictions would have been = 6!
= 720 possible ways.
If the girs should sit on the first or last sit
The possible arrangement= 2!4!
= 2*24
= 48
But now the two girls should be arranged in such a way that the don't sit on either the first or the last chair.
So the possible way now is= way without restriction - way if the girls are to sit at either first or last sit
= 720-48
= 672
Answer:
Falso.
Step-by-step explanation:
Acá tenemos la proposición:
"En una multiplicación, si un factor es un número natural y el otro es un número entero negativo, el producto es siempre menor que cada uno de los factores."
Primero tratemos de demostrar que esto es falso, para ello debemos encontrar un solo ejemplo en el que la proposición sea falsa.
Elijamos al número 1 como el número natural,
Elijamos -10 como el número entero negativo.
El producto es:
1*-10 = -10
Ahora veamos si el producto es menor que cada uno de los factores.
-10 < 1 ?
Si, -10 es menor que 1.
Ahora veamos con el otro factor:
-10 < - 10?
No, un número no puede ser menor que si mismo.
Entonces el producto no siempre es menor que cada uno de los factores.
Entonces la proposición es falsa.
The answer is B. In 10 hours, the phone would completely lose its charge.
Y=-10(10)+100=-100+100=0
Answer:
169 Speeding Tickets, 206 Warnings.
Step-by-step explanation:
If there were 37 more warnings than tickets, then the first thing you want to do is remove that from the total by subtracting it: 375-37 = 338.
You then halve this to split them into tickets and warnings: 338/2 = 169.
Lastly, you add back the 37 more warnings, giving you 169 speeding tickets and 206 warnings.
Answer: 21/35 girls 14/21 boys
Step-by-step explanation: To find the number of girls, multiply
3/5 × 35 = 21 girls
You can subtract 35-21 to find the number of boys, or multiply
2/5 × 35 = 14 boys
Realizing that 35/5 = 7, we can multiply
7/7 × 3/5 to get the <em>fractional equivalent of girls 21/35</em>
and 7/7 × 2/5 to get the <em>fractional equivalent of boys 14/35</em>