The volume of the cone is 3.14 x 14 x 14
Answer:
It's (C) 240in3
Step-by-step explanation:
Volume of the prototype is 250 in.³
To find the 20th term in this sequence, we can simply keep on adding the common difference all the way until we get up to the 20th term.
The common difference is the number that we are adding or subtracting to reach the next term in the sequence.
Notice that the difference between 15 and 12 is 3.
In other words, 12 + 3 = 15.
That 3 that we are adding is our common difference.
So we know that our first term is 12.
Now we can continue the sequence.
12 ⇒ <em>1st term</em>
15 ⇒ <em>2nd term</em>
18 ⇒ <em>3rd term</em>
21 ⇒ <em>4th term</em>
24 ⇒ <em>5th term</em>
27 ⇒ <em>6th term</em>
30 ⇒ <em>7th term</em>
33 ⇒ <em>8th term</em>
36 ⇒ <em>9th term</em>
39 ⇒ <em>10th term</em>
42 ⇒ <em>11th term</em>
45 ⇒ <em>12th term</em>
48 ⇒ <em>13th term</em>
51 ⇒ <em>14th term</em>
54 ⇒ <em>15th term</em>
57 ⇒ <em>16th term</em>
60 ⇒ <em>17th term</em>
63 ⇒ <em>18th term</em>
66 ⇒ <em>19th term</em>
<u>69 ⇒ </u><u><em>20th term</em></u>
<u><em></em></u>
This means that the 20th term of this arithemtic sequence is 69.
Answer:
Proof in explanation.
Step-by-step explanation:
I'm going to attempt this by squeeze theorem.
We know that
is a variable number between -1 and 1 (inclusive).
This means that
.
for all value
. So if we multiply all sides of our inequality by this, it will not effect the direction of the inequalities.

By squeeze theorem, if 
and
, then we can also conclude that
.
So we can actually evaluate the "if" limits pretty easily since both are continuous and exist at
.

.
We can finally conclude that
by squeeze theorem.
Some people call this sandwich theorem.