Answer:
D -- ATP synthesis when the phosphate donor is a substrate with high phosphoryl transfer potential
Explanation:
Substrate- level phosphorylation is the synthesis of ATP from ADP by the transfer of phosphoryl group from a substrate with high phosphoryl group potential to the ADP molecule.
In substrate-level phosphorylation, the donor is a phosphorylated intermediate molecule with a high phosphate transfer potential and it is a way through which phosphate in introduced into a molecule, the other two ways are oxidative phosphorylation and photophosphorylation. In substrate-level phosphorylation, a PO4^2- is transferred from a phosphate intermediate (substrate) to ADP to form ATP. Phosphorylase and kinases are enzymes involved in this reaction. An example is the reaction in glycolysis which involves phosphoenolpyruvate and ADP to form Pyruvate and ATP. This is to ensure adequate supply of energy to cells and also during anoxia so as not to make mitochodria strain the glycolytic ATP reserves.
Http://www.pbs.org/wgbh/nova/cancer/folkman.html
I believe this website will help :)
Answer:
All the choices are correct
<span>B. A prokaryotic cell does not have nucleus and the other one does. The most defining characteristic of eukaryotic cells is their true nucleus. Prokaryotes lack true nucleus</span> and membrane bound organelles.
Answer:
The correct answer is allopatric speciation.
Explanation:
Allopatric speciation occurs when a geographical barrier comes between a species population living in the same area. This geographical barrier separates the population into two different geographical area which do not have the same condition.
So as both the separated population get different habitat environment to live so they evolve differently from each other. So natural selection and genetic drift works differently in both the population which brings genetic changes in the population and helps in creating a new species.