A. The particles are packed more tightly in materials with more density which causes the vibrations to bounce of the partials more rapidly which makes them go faster
<span>Even though the Sun has a greater mass than Earth, the Moon orbits Earth because it's closer to the Earth than to the Sun. Because of this proximity between the Earth and the Moon, the Earth has a stronger gravitational pull than the Sun does. Furthermore, the Earth's mass is 81 times that of the Moon, and so at this proximity, it is more than able to overpower what pull the Sun exerts on the Moon.</span>
metamorphic, sedimentary, igneous
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.