Answer:
maximum speed of the bananas is 18.8183 m/s
Explanation:
Given data
amplitude A = 23.195 cm
spring constant K = 15.2676 N/m
mass of the bananas m = 56.9816 kg
to find out
maximum speed of the bananas
solution
we know that radial oscillation frequency formula that is = √(K/A)
radial oscillation frequency = √(15.2676/23.195)
radial oscillation frequency is 0.8113125 rad/s
so maximum speed of the bananas = radial oscillation frequency × amplitude
maximum speed of the bananas = 0.8113125 × 23.195
maximum speed of the bananas is 18.8183 m/s
Answer:
(a) 0.3778 eV
(b) Ratio = 0.0278
Explanation:
The Bohr's formula for the calculation of the energy of the electron in nth orbit is:

(a) The energy of the electron in n= 6 excited state is:


Ionisation energy is the amount of this energy required to remove the electron. Thus, |E| = 0.3778 eV
(b) For first orbit energy is:




Ratio = 0.0278
Answer:
200000 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
Kinetic energy is simply defined as the energy possess by an object in motion. Mathematically, it can be expressed as:
KE = ½mv²
Where
KE => is the kinetic energy.
m =>is the mass of the object
V => it the velocity of the object.
With the above formula, we can obtain the kinetic energy of the roller coaster as follow:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 1000 × 20²
KE = 500 × 400
KE = 200000 J
Therefore, the kinetic energy of the roller coaster is 200000 J.
The uniform microwave radiation remaining from the Big Bang.
So, your body is always having background radiation and that means space!
Answer:
the position of the wood below the interface of the two liquids is 2.39 cm.
Explanation:
Given;
density of oil,
= 926 kg/m³
density of the wood,
= 974 kg/m³
density of water,
= 1000 kg/m³
height of the wood, h = 3.69 cm
Based on the density of the wood, it will position across the two liquids.
let the position of the wood below the interface of the two liquids = x
Let the wood be in equilibrium position;
![F_{wood} - F_{oil} - F_{water} = 0\\\\\rho _{wood} .gh - \rho _o .g(h-x) - \rho_w .gx = 0\\\\\rho _{wood} .h - \rho _o (h-x) - \rho_w .x = 0\\\\\rho _{wood} .h -\rho _o h + \rho _o x - \rho_w .x =0\\\\h (\rho _{wood} -\rho _o ) = x( \rho_w - \rho _o)\\\\x =h[\frac{ \rho _{wood} -\rho _o }{\rho_w - \rho _o} ]\\\\x = 3.69\ cm \times [\frac{974 - 926}{1000-926} ]\\\\x = 2.39 \ cm](https://tex.z-dn.net/?f=F_%7Bwood%7D%20-%20F_%7Boil%7D%20-%20F_%7Bwater%7D%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.gh%20-%20%5Crho%20_o%20.g%28h-x%29%20-%20%5Crho_w%20.gx%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%20%5Crho%20_o%20%28h-x%29%20-%20%5Crho_w%20.x%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%5Crho%20_o%20h%20%2B%20%5Crho%20_o%20x%20-%20%5Crho_w%20.x%20%3D0%5C%5C%5C%5Ch%20%28%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%29%20%3D%20x%28%20%5Crho_w%20-%20%5Crho%20_o%29%5C%5C%5C%5Cx%20%3Dh%5B%5Cfrac%7B%20%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%7D%7B%5Crho_w%20-%20%5Crho%20_o%7D%20%5D%5C%5C%5C%5Cx%20%3D%203.69%5C%20cm%20%5Ctimes%20%5B%5Cfrac%7B974%20-%20926%7D%7B1000-926%7D%20%5D%5C%5C%5C%5Cx%20%3D%202.39%20%5C%20cm)
Therefore, the position of the wood below the interface of the two liquids is 2.39 cm.